Download presentation

Presentation is loading. Please wait.

Published byJessie Newbrough Modified over 4 years ago

1
Phys141 Principles of Physical Science Chapter 3 Force and Motion Instructor: Li Ma Office: NBC 126 Phone: (713) 313-7028 Email: malx@tsu.edumalx@tsu.edu Webpage: http://itscience.tsu.edu/ma Department of Computer Science & Physics Texas Southern University, Houston Sept. 15, 2004

2
Topics To Be Discussed Force and Net Force Newton’s First Law of Motion Newton’s Second Law of Motion Newton’s Third Law of Motion Newton’s Law of Gravitation Momentum

3
Cause of Motion A push causes something to move This push is the application of a force Force and Motion: Cause and Effect Galileo did experiments on moving objects Newton formulated the laws of motion and explained the phenomena of moving objects on the Earth and the motions of planets

4
Force Easy to describe force Define force in terms of what it does: –A force can produce changes in motion –A force can produce a change in velocity (speed and/or direction), or cause a acceleration –Observed motion is evidence of a force A force is a quantity that is capable of producing motion or a change in motion

5
Net Force A force’s capability may be balanced or canceled by other force(s): the net effect is then zero More than one force acts on an object: –unbalanced/net force: tug of war Forces are vector quantities Only net force can cause change in motion

6
Newton’s First Law of Motion The natural state of motion: –Aristotle: the natural state of an object is being at rest – no idea of friction –Galileo: objects could naturally remain in motion rather than come to rest Newton’s first law of motion –An object will remain at rest or in uniform motion in a straight line unless acted on by an external, unbalanced force

7
Newton’s First Law of Motion (cont) External force: an applied force Internal force: can not change the state of motion Friction and Gravity on the Earth make it difficult to observe an object in a state of constant velocity

8
Motion and Inertia Inertia: natural tendency of an object to remain in a state of rest or in uniform motion in a straight line - Galileo Mass is a measure of inertia – Newton –The greater the mass of an object, the greater is its inertia, the greater is its resistance to a change in motion Newton’s first law: Law of inertia

9
Newton’s Assumptions of Acceleration The acceleration produced by an unbalance force acting on an object (or mass) is directly proportional to the magnitude of the force (a ∞ F) and in the direction of the force The acceleration of an object being acted on by an unbalance force is inversely proportional to the mass of the object (a ∞ 1/m)

10
Newton’s Assumptions of Acceleration (cont) Combining these effects of force and mass on acceleration: unbalanced force acceleration ∞ mass or a ∞ (F / m)

11
Newton’s Second Law of Motion a = F / m or F = m·a F is the net force m is the total mass Unit of the force is newton in metric system: 1 N = 1kg·m/s 2

12
Example Given: –m 1 =1.0kg, F 1 =-5.0N (left, negative direction) ; –m 2 =1.0kg, F 2 =+8.0N (right, positive direction) ; Wanted: a (acceleration) Equation: a = (F 1 +F 2 )/(m 1 +m 2 ) a = (+8.0N-5.0N)/(1.0kg+1.0kg) = +1.5m/s 2 m 1 1.0 kg m 2 1.0 kg a F 1 = -5.0N F 2 = +8.0N

13
Mass and Weight Mass is the amount of matter an object contains, or a measure of inertia Weight is related to the force of gravity (gravitational force acting on an object) They are related: weight = mass x acceleration due to gravity w = m·g

14
Newton’s Third Law of Motion The law of action and reaction For every action there is an equal and opposite reaction Whenever one object exerts a force on a second object, the second object exerts an equal (in magnitude) and opposite (in direction) force on the first object action = opposite reaction F1 = - F2

15
Comparing Newton’s Second & Third laws Newton’s third law relates two equal and opposite forces acting on two different objects Newton’s second law concerns how forces acting on a single object can cause an acceleration

16
Newton’s Law of Universal Gravitation Gravity: a common fundamental force in nature Every particle in the universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them F ∞ (m 1 m 2 / r 2 )

17
Newton’s Law of Gravitation (cont) F = (G m 1 m 2 / r 2 ) G is the universal gravitational constant G = 6.67 x 10 -11 N·m 2 /kg 2 Why objects fall to the ground of the Earth, Earth doesn’t move? Why we can’t feel attraction from book? Astronauts in space shuttle orbiting the Earth are weightless?

18
Linear Momentum Product of mass and velocity Linear momentum is a vector, in direction of velocity If there is no external net force, linear momentum is conserved linear momentum = mass x velocity p = m·v

19
Linear Momentum (cont) Law of conservation of linear momentum: –The total linear momentum of an isolated system remains the same if there is no external unbalanced force acting on the system Example of the conservation of linear momentum: man jump out from the boat

20
Angular Momentum Angular momentum arises when objects go in the paths around a fixed point The angular momentum of a system can be changed by an external unbalanced torque L = m·v·r r = distance of object from center of motion

21
Angular Momentum (cont) A torque is a twisting effect caused by one or more forces A torque tends to produce a rotational motion r F T = F·r v

22
Angular Momentum (cont) Law of conservation of angular momentum: –The angular momentum of an object remains constant if there is no external unbalanced torque acting on it Example of the conservation of angular momentum: ice skaters spin on the ice

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google