Download presentation
Presentation is loading. Please wait.
Published byBrenden Isbell Modified over 9 years ago
1
Evolving Factor Analysis The evolution of a chemical system is gradually known by recording a new response vector at each stage of the process under study. EFA performs subsequent PCA on gradually increasing submatrices in the process direction, enlarged by adding one new row at a time. This procedure is performed from top to bottom of the data set (forward EFA) and from bottom to top (backward EFA) to investigate the emergence and the decay of the process contribution, respectively. The forward and backward EFA plots are built by representating the singular values of each PCA analysis vs. the process variable related to the last row included in the window analyzd.
27
1.4327 0.0024 Singular values (0-2 sec)
28
2.2664 0.0083 0.0000 Singular values (0-4 sec)
29
3.2730 0.0231 0.0000 0.0000 Singular values (0-6 sec)
30
4.4044 0.0563 0.0001 0.0000 Singular values (0-8 sec)
31
5.5834 0.1245 0.0004 0.0000 Singular values (0-10 sec)
32
6.7299 0.2517 0.0012 0.0000 Singular values (0-12 sec)
33
7.7864 0.4668 0.0036 0.0000 Singular values (0-14 sec)
34
8.7323 0.7956 0.0099 0.0000 Singular values (0-16 sec)
35
9.5808 1.2484 0.0244 0.0000 Singular values (0-18 sec)
36
10.3637 1.8119 0.0552 0.0000 Singular values (0-20 sec)
37
11.1136 2.4512 0.1133 0.0000 Singular values (0-22 sec)
38
11.8506 3.1232 0.2110 0.0000 Singular values (0-24 sec)
39
12.5772 3.7923 0.3561 0.0000 Singular values (0-26 sec)
40
13.2808 4.4360 0.5455 0.0000 Singular values (0-28 sec)
41
13.9413 5.0402 0.7623 0.0000 Singular values (0-30 sec)
42
14.5360 5.5893 0.9812 0.0000 Singular values (0-32 sec)
43
15.0430 6.0633 1.1776 0.0000 Singular values (0-34 sec)
44
15.4449 6.4435 1.3359 0.0000 Singular values (0- 36 sec)
45
15.7348 6.7216 1.4512 0.0000 Singular values (0- 38 sec)
46
15.9215 6.9040 1.5268 0.0000 Singular values (0- 40 sec)
47
16.0273 7.0098 1.5713 0.0000 Singular values (0- 42 sec)
48
16.0794 7.0634 1.5942 0.0000 Singular values (0- 44 sec)
49
16.1015 7.0868 1.6044 0.0000 Singular values (0- 46 sec)
50
16.1096 7.0955 1.6083 0.0000 Singular values (0-48 sec)
51
16.1122 7.0983 1.6096 0.0000 Singular values (0-50 sec)
52
0.7231 0.0017 0.000 0.000 Singular values (50-48 sec)
53
1.2648 0.0060 0.0000 0 Singular values (50-46 sec)
54
2.0245 0.0164 0.0000 0.0000 Singular values (50-44 sec)
55
3.0143 0.0395 0.0000 0.0000 Singular values (50-42 sec)
56
4.2074 0.0865 0.0001 0.0000 Singular values (50-40 sec)
57
5.5408 0.1738 0.0003 0.0000 Singular values (50-38 sec)
58
6.9305 0.3215 0.0009 0.0000 Singular values (50-36 sec)
59
8.2934 0.5483 0.0029 0.0000 Singular values (50-34 sec)
60
9.5650 0.8639 0.0082 0.0000 Singular values (50-32 sec)
61
10.7064 1.2627 0.0213 0.0000 Singular values (50-30 sec)
62
11.7008 1.7245 0.0504 0.0000 Singular values (50-28 sec)
63
12.5455 2.2228 0.1080 0.0000 Singular values (50-26 sec)
64
13.2478 2.7381 0.2091 0.0000 Singular values (50-24 sec)
65
13.8235 3.2656 0.3639 0.0000 Singular values (50-22 sec)
66
14.2956 3.8130 0.5684 0.0000 Singular values (50-20 sec)
67
14.6900 4.3880 0.8003 0.0000 Singular values (50-18 sec)
68
15.0288 4.9811 1.0266 0.0000 Singular values (50-16 sec)
69
15.3247 5.5579 1.2200 0.0000 Singular values (50-14 sec)
70
15.5782 6.0693 1.3680 0.0000 Singular values (50-12 sec)
71
15.7824 6.4753 1.4711 0.0000 Singular values (50-10 sec)
72
15.9307 6.7613 1.5372 0.0000 Singular values (50-8 sec)
73
16.0254 6.9387 1.5759 0.0000 Singular values (50-6 sec)
74
16.0776 7.0349 1.5963 0.0000 Singular values (50- 4 sec)
75
16.1022 7.0801 1.6058 0.0000 Singular values (50-2 sec)
76
16.1122 7.0983 1.6096 0.0000 Singular values (50-0 sec)
78
Using MATLAB for evolving factor analysis
79
hplc.m file Creating HPLC-DAD data
80
HPLC-DAD data for three components system
82
EFA.m file Evolving Factor Analysis
83
Retention Time Wavelength D
85
Delete the SVF and SVB variables from the memory in work space
87
Creating the SVF matrix with (m m- 1) dimensions and all elements equal to zero
88
An example for zeros command in MATLAB
101
Plot the results of forward analysis
113
Change in order of columns of the matrix
116
Comparison of real and estimated profiles
117
? Employ the EFA in wavelength direction of data matrix and interpret the results
118
Transformation the concentration windows calculated with EFA to concentration profiles Retention Time
119
C= S T = Concentration matrix Score matrix Transformation matrix c 1 = S t 1 = Concentration vector Score matrix Transformation vector = c 0 = S 0 t 1 0= t 11 s 1 + t 21 s 2 + t 31 s 3
120
HPLC-DAD data for three components system
121
Results from EFA Retention Time From row number 35 to 61
122
concEFA.m file for calculation the concentration profiles according to results of EFA
126
Comparison the results with true values
127
? Use the concEFA.m file and calculate the concentration profile for third component
128
Application of EFA in chemical equilibria study Stepwise dissociation of triprotic acid H 3 A
130
H3A.m file for simulating the spectrophotometric monitoring of pH-meteric titration
132
Evolving Factor Analysis (EFA)
134
? Use the H3A.m file and investigate the effects of pKas on results of EFA.
135
Application of EFA in chemical Linetics study Consecutive reaction
137
consecutive.m file for simulating the spectrophotometric monitoring of consecutive A B C reaction
139
Evolving Factor Analysis (EFA)
141
? Use the consecutive.m file and investigate the effects of rate constants on results of EFA.
142
Fixed concentration of interference and EFA
144
EFA
145
HPLC-DAD data after column mean centering
146
Results of forward and backward eigen analysis
147
Results of applying EFA on mean centered data
148
Score plot without mean centering
149
Score plot after mean centering
150
Distribution of objects of a two component system O A2 A1
151
Mean centering O A1 A2
152
Mean centering and then PCA O PC1 PC2
153
Distribution of objects of a two component system O A1 A2
154
Mean centering on window data O A1 A2
155
Before appearance the analyte the variance is equal to zero Mean centering on window data and then PCA O PC1 PC2
156
Before appearance the analyte the variance is equal to zero Mean centering on window data and then PCA O PC1 PC2
157
O PC1 PC2 Before appearance the analyte the variance is equal to zero Mean centering on window data and then PCA
158
Before appearance the analyte the variance is equal to zero Mean centering on window data and then PCA O PC1 PC2
159
Mean centering on window data O A1 A2
160
Mean centering and then PCA on window data O PC1 PC2
161
Mean centering on window data O A1 A2
162
Mean centering and then PCA on window data O PC1 PC2
163
Mean centering on window data O A1 A2
164
Mean centering and then PCA on window data O PC1 PC2
165
IEFA.m Evolving factor analysis in the presence of fixed concentration interferent
166
Results of applying IEFA.m file
168
Comparison between results of IEFA and real values of analyte
169
? Use IEFA.m file and analyze the three co-eluting components system with fix concentration of one of them
170
Titration of H3A in the presence of an inert species
172
EFA results
173
EFA results in the absence of interference
174
? WHY?
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.