Presentation is loading. Please wait.

Presentation is loading. Please wait.

Fast Fourier Transform. Fourier 变换 : 存在的条件 : 反变换 : Jean Baptiste Joseph Fourier (1768 - 1830)

Similar presentations


Presentation on theme: "Fast Fourier Transform. Fourier 变换 : 存在的条件 : 反变换 : Jean Baptiste Joseph Fourier (1768 - 1830)"— Presentation transcript:

1 Fast Fourier Transform

2 Fourier 变换 : 存在的条件 : 反变换 : Jean Baptiste Joseph Fourier (1768 - 1830)

3 当 g(x) 为实函数

4 delta 函数 t (t)(t)   TopHat 函数

5       cos(  0 t) t  cosine 函数 sine 函数

6 位移性质 : 相似性质 : a-a

7 energy theorem, Rayleigh’s theorem The zero frequency point 反变换 : 代入

8 常用的 Fourier 变换

9 连续傅立叶变换 (Continuous Fourier Transform) 离散傅立叶变换 (Discrete Fourier Transform) where For u=0,1,2,…,N-1 For x=0,1,2,…,N-1 连续傅立叶变换 (Continuous Fourier Transform) 离散傅立叶变换 (Discrete Fourier Transform) 常用的其他定义

10 连续 Fourier 变换 (Continuous Fourier Transform) 反变换 DFT: IDFT:

11 矩阵形式的 DFT

12 omega = exp(-2*pi*i/n); j = 0:n-1; k = j'; F = omega.^(k*j); % an easier,and quicker, way to generate F is F = fft(eye(n));

13 Fast Fourier Transform The Fast Fourier Transform (FFT) is a very efficient algorithm for performing a discrete Fourier transform FFT principle first used by Gauss in 1805? FFT algorithm published by Cooley & Tukey in 1965 In 1969, the 2048 point analysis of a seismic trace took 13 ½ hours. Using the FFT, the same task on the same machine took 2.4 seconds!

14 Requires N 2 complex multiplies and N(N-1) complex additions 离散 Fourier 变换 (DFT) ( 此处定义与教材和 MATLAB 保持一致 ) 对称性 : 周期性 : W N =e -j2π/N

15 两个长度为 N/2 的 DFT 之和

16 Cross feed of G[k] and H[k] in flow diagram is called a “ butterfly ”, due to the shape or simplify: X[0…7] x[0,2,4,6] x[1,3,5,7] N/2 DFT N/2 DFT

17

18 因为 W N/2 = -1, X k 0 和 X k 1 具有周期 N/2, 对 N=8 , There are N/2 butterflies for this stage of the FFT, and each butterfly requires one multiplication Diagrammatically (butterfly),

19 The splitting of {X k } into two half-size DFTs can be repeated on X k 0 and X k 1 themselves,

20 –{ X k 00 } is the N/4-point DFT of {x 0, x 4, …, x N-4 }, –{ X k 01 } is the N/4-point DFT of {x 2, x 6, …, x N-2 }, –{ X k 10 } is the N/4-point DFT of {x 1, x 5, …, x N-3 }, –{ X k 11 } is the N/4-point DFT of {x 3, x 7, …, x N-1 }.

21 bit reversal 0, 1, 2, 3, 4, 5, 6, 7 is reordered to 0, 4, 2, 6, 1, 5, 3, 7 DecimalBinary Decimal 0000 0 1001 1004 2010 2 3011 1106 4100 0011 5101 5 6110 0113 7111 7

22 定义 c=[0 2 4 6 1 3 5 7]

23

24

25 function y=fft(x,n) if n=1 y=x else m=n/2; w=e -i2πn y T =fft(x(0:2:n),m) y B =fft(x(1:2:n),m) d=[1,w,…,w m-1 ] T z=d.*y B y=[y T +z; y B +z] end 设 n=2 t

26 fftgui(y) 产生 4 个 plots: real(y),imag(y), real(fft(y)),imag(fft(y)) print -deps FftGui.eps print – depsc2 FftGui.eps

27 y 0 =1,y 1 =…=y n-1 =0,

28 y 0 =0,y 1 =1,y 2 =…=y n-1 =0,

29 FFT is the sum of two sinusoids

30 Nyquist point

31 若 y 是长度为 n 的实向量,Y=fft(y), 则 real(Y 0 )=∑y j imag(Y 0 )=0 real(Y j )=real(Y n-j ), j=1,…,n/2 imag(Y j )=-imag(Y n-j ),j=1,…,n/2

32 697 770 852 941 1209 1336 1477 % the sampling rate. Fs = 32768; t = 0:1/Fs:0.25; % the button in position (k,j) for k=1:4 for j=1:3 y1 = sin(2*pi*fr(k)*t); y2 = sin(2*pi*fc(j)*t); y = (y1 + y2)/2; input('Press any key:)'); sound(y,Fs) end

33

34

35 load sunspot.dat t = sunspot(:,1)'; wolfer = sunspot(:,2)'; n = length(wolfer); c = polyfit(t,wolfer,1); trend = polyval(c,t); plot(t,[wolfer; trend],'-', t,wolfer,'k.')

36

37 y = wolfer - trend; Y = fft(y); Fs = 1; % Sample rate f = (0:n/2)*Fs/n; pow = abs(Y(1:n/2+1)); plot([f; f],[0*pow; pow],'c-', … f,pow,'b.',... 'linewidth',2, 'markersize',16)

38

39

40 plot(fft(eye(17))) axis square

41 Chebyshev Polynomial 扩充到复平面 扩充到 |z|>1 递推关系 : 满足微分方程 : 第二类 Chebyshev 多项式

42 shg,hold on fplot('x',[-1,1]) fplot('2*x^2-1',[-1,1]) fplot('4*x^3-3*x',[-1,1]) fplot('8*x^4-8*x^2+1',[-1,1]) fplot('16*x^5-20*x^3+5*x',[-1,1])

43 “We do not make things, We make things better.”

44 The price (in euros) of a magazine has changed as follows Estimate the price in November 2002 by extrapolating these data. Nov. 87Dec. 88Nov. 90Jan. 93Jan. 95Jan. 96Nov. 96Nov. 00 4.5566.577.588 11437638799109157180 4.5566.577.588?


Download ppt "Fast Fourier Transform. Fourier 变换 : 存在的条件 : 反变换 : Jean Baptiste Joseph Fourier (1768 - 1830)"

Similar presentations


Ads by Google