Presentation is loading. Please wait.

Presentation is loading. Please wait.

Special Senses: Hearing Slides mostly © Marieb & Hoehn 9th ed.

Similar presentations


Presentation on theme: "Special Senses: Hearing Slides mostly © Marieb & Hoehn 9th ed."— Presentation transcript:

1 Special Senses: Hearing Slides mostly © Marieb & Hoehn 9th ed.
Ch. 15 Special Senses: Hearing Slides mostly © Marieb & Hoehn 9th ed. Other slides by WCR

2 The Ear: Hearing and Balance
Three major areas of ear External (outer) ear – hearing only Middle ear (tympanic cavity) – hearing only Internal (inner) ear – hearing and equilibrium Receptors for hearing and balance respond to separate stimuli Are activated independently © 2013 Pearson Education, Inc.

3 The three regions of the ear
Figure 15.24a Structure of the ear. Middle ear Internal ear (labyrinth) External ear Auricle (pinna) Helix Lobule External acoustic meatus Tympanic membrane Pharyngotympanic (auditory) tube The three regions of the ear © 2013 Pearson Education, Inc.

4 External Ear Auricle (pinna) & external acoustic meatus (auditory canal) Funnel sound waves to eardrum Tympanic membrane (eardrum) Boundary between external and middle ears Connective tissue membrane that vibrates in response to sound Transfers sound energy to bones of middle ear © 2013 Pearson Education, Inc.

5 Middle Ear Air-filled (usually), mucosa-lined cavity in temporal bone
Flanked laterally by eardrum Remaining borders are formed by by temporal bone Oval window, round windows: covered connections to the inner ear Contains 3 bones, 2 muscles Pharyngotympanic (auditory) tube Connects middle ear to nasopharynx Equalizes pressure in middle ear cavity with external air pressure © 2013 Pearson Education, Inc.

6 Three small bones in tympanic cavity: the malleus, incus, and stapes
Ear Ossicles Three small bones in tympanic cavity: the malleus, incus, and stapes Suspended by ligaments and joined by synovial joints Transmit vibratory motion of eardrum to oval window Tensor tympani and stapedius muscles contract reflexively in response to loud sounds to prevent damage to hearing receptors © 2013 Pearson Education, Inc.

7 Middle and internal ear
Figure 15.24b Structure of the ear. Oval window (deep to stapes) Entrance to mastoid antrum in the epitympanic recess Semicircular canals Malleus (hammer) Vestibule Incus (anvil) Auditory ossicles Vestibular nerve Stapes (stirrup) Cochlear nerve Tympanic membrane Cochlea Round window Pharyngotympanic (auditory) tube Middle and internal ear © 2013 Pearson Education, Inc.

8 Middle ear inflammation
Otitis Media Middle ear inflammation Especially in children Shorter, more horizontal pharyngotympanic tubes Most frequent cause of hearing loss in children Most treated with antibiotics Myringotomy to relieve pressure if severe © 2013 Pearson Education, Inc.

9 View Superior Malleus Incus Epitympanic recess Lateral Anterior
Figure The three auditory ossicles and associated skeletal muscles. View Superior Malleus Incus Epitympanic recess Lateral Anterior Pharyngotym- panic tube Tensor tympani muscle Tympanic membrane (medial view) Stapes Stapedius muscle © 2013 Pearson Education, Inc.

10 Two Major Divisions of Internal Ear
Bony labyrinth Tortuous channels in temporal bone Three regions: vestibule, semicircular canals, and cochlea Filled with perilymph – similar to CSF Membranous labyrinth Series of membranous sacs and ducts Filled with potassium-rich endolymph © 2013 Pearson Education, Inc.

11 Temporal bone Semicircular ducts in semicircular canals Facial nerve
Figure Membranous labyrinth of the internal ear. Temporal bone Semicircular ducts in semicircular canals Facial nerve Vestibular nerve Superior vestibular ganglion Anterior Posterior Inferior vestibular ganglion Lateral Cristae ampullares in the membranous ampullae Cochlear nerve Maculae Spiral organ Utricle in vestibule Cochlear duct in cochlea Saccule in vestibule Stapes in oval window Round window © 2013 Pearson Education, Inc.

12 The Cochlea Spiral, conical, bony chamber
Size of split pea, goes from base to apex Contains cochlear duct, which houses organ of Corti (spiral organ) Cavity of cochlea divided into three chambers Scala vestibuli—abuts oval window & stapes, contains perilymph Scala media (cochlear duct)—contains endolymph Scala tympani—terminates at round window; contains perilymph Scala tympani, scala vestibuli connect with each other at helicotrema (apex) © 2013 Pearson Education, Inc.

13 The Cochlea Cochlear duct (scala media) is sandwiched between scala vestibuli & scala tympani "Floor" of cochlear duct formed by basilar membrane, which supports organ of Corti (spiral organ) Cochlear branch of nerve VIII runs from cochlea to brain © 2013 Pearson Education, Inc.

14 Modiolus Spiral ganglion Osseous spiral lamina Vestibular membrane
Figure 15.27a Anatomy of the cochlea. Helicotrema at apex Modiolus Cochlear nerve, division of the vestibulocochlear nerve (VIII) Spiral ganglion Osseous spiral lamina Vestibular membrane Cochlear duct (scala media) © 2013 Pearson Education, Inc.

15 Vestibular membrane Osseous spiral lamina Tectorial membrane Spiral
Figure 15.27b Anatomy of the cochlea. Vestibular membrane Osseous spiral lamina Tectorial membrane Spiral ganglion Scala vestibuli (contains perilymph) Cochlear duct (scala media; contains endolymph) Stria vascularis Spiral organ Scala tympani (contains perilymph) Basilar membrane © 2013 Pearson Education, Inc.

16 Hairs (stereocilia) Supporting cells
Figure 15.27c Anatomy of the cochlea. Tectorial membrane Inner hair cell Hairs (stereocilia) Afferent nerve fibers Outer hair cells Supporting cells Fibers of cochlear nerve Basilar membrane © 2013 Pearson Education, Inc.

17 Inner hair cell Outer hair cell Figure 15.27d Anatomy of the cochlea.
© 2013 Pearson Education, Inc.

18 Properties of Sound Sound is Sound wave
Pressure disturbance (alternating areas of high and low pressure) produced by vibrating object Sound wave Moves outward in all directions Illustrated as an S-shaped curve or sine wave © 2013 Pearson Education, Inc.

19 A struck tuning fork alternately compresses
Figure Sound: Source and propagation. Area of high pressure (compressed molecules) Area of low pressure (rarefaction) Wavelength Air pressure Distance Amplitude A struck tuning fork alternately compresses and rarefies the air molecules around it, creating alternate zones of high and low pressure. Sound waves radiate outward in all directions. © 2013 Pearson Education, Inc.

20 Properties of Sound Waves
Frequency Number of waves that pass given point in given time Wavelength Distance between two consecutive crests Shorter wavelength = higher frequency of sound Frequency range of normal (healthy) hearing: 20 – 20,000 Hertz (Hz) Pitch Perception of frequency: higher frequency = higher pitch Most sounds are mixtures of many different frequencies simultaneously © 2013 Pearson Education, Inc.

21 Properties of Sound Amplitude Loudness = perception of amplitude
Height of crests Loudness = perception of amplitude Subjective interpretation of sound intensity Normal range is 0–120 decibels (dB) Severe hearing loss with prolonged exposure above 90 dB Loud music is 120 dB or more © 2013 Pearson Education, Inc.

22 High frequency (short wavelength) = high pitch
Figure Frequency and amplitude of sound waves. High frequency (short wavelength) = high pitch Low frequency (long wavelength) = low pitch Pressure 0.01 0.02 0.03 Time (s) Frequency is perceived as pitch. High amplitude = loud Low amplitude = soft Pressure 0.01 0.02 0.03 Time (s) Amplitude (size or intensity) is perceived as loudness. © 2013 Pearson Education, Inc.

23 Transmission of Sound to the Internal Ear
Sound waves vibrate tympanic membrane Ossicles vibrate and concentrate the energy (amplify the pressure) at stapes footplate in oval window Cochlear fluid set into wave motion Pressure waves move through perilymph of scala vestibuli Basilar membrane is “mechanically tuned”: different parts vibrate most (i.e. resonate) in response to different frequencies © 2013 Pearson Education, Inc.

24 Basilar Membrane Tuning (Resonance)
Fibers near oval window short and stiff Resonate with high-frequency pressure waves Fibers near cochlear apex longer, more floppy Resonate with lower-frequency pressure waves Thus basilar membrane “maps” different frequencies to different places along its length. The “place theory” of hearing is most true for disciminating high frequencies. © 2013 Pearson Education, Inc.

25 Route of sound waves through the ear
Figure 15.30a Pathway of sound waves and resonance of the basilar membrane. Slide 1 Auditory ossicles Malleus Incus Stapes Cochlear nerve Scala vestibuli Oval window Helicotrema 4a Scala tympani Cochlear duct 2 3 Basilar membrane 4b 1 Sounds with frequencies below hearing travel through the helicotrema and do not excite hair cells. 4a Tympanic membrane Round window Route of sound waves through the ear Sound waves vibrate the tympanic membrane. 1 Auditory ossicles vibrate. Pressure is amplified. 2 Pressure waves created by the stapes pushing on the oval window move through fluid in the scala vestibuli. 3 Sounds in the hearing range go through the cochlear duct, vibrating the basilar membrane and deflecting hairs on inner hair cells. 4b © 2013 Pearson Education, Inc.

26 High-frequency sounds displace the basilar membrane near the base.
Figure 15.30b Pathway of sound waves and resonance of the basilar membrane. Basilar membrane High-frequency sounds displace the basilar membrane near the base. Medium-frequency sounds displace the basilar membrane near the middle. Low-frequency sounds displace the basilar membrane near the apex. Fibers of basilar membrane Apex (long, floppy fibers) Base (short, stiff fibers) 20,000 2000 200 20 Frequency (Hz) Different sound frequencies cross the basilar membrane at different locations. © 2013 Pearson Education, Inc.

27 Excitation of Hair Cells in the Spiral Organ
Cells of spiral organ Supporting cells Cochlear hair cells One row of inner hair cells Three rows of outer hair cells Have many stereocilia and one kinocilium Afferent fibers of cochlear nerve coil about bases of hair cells © 2013 Pearson Education, Inc.

28 Hairs (stereocilia) Supporting cells
Figure 15.27c Anatomy of the cochlea. Tectorial membrane Inner hair cell Hairs (stereocilia) Afferent nerve fibers Outer hair cells Supporting cells Fibers of cochlear nerve Basilar membrane © 2013 Pearson Education, Inc.

29 Excitation of Hair Cells in the Spiral Organ
Stereocilia protrude from hair cells, some embed in tectorial membrane above Passing pressure wave causes deflection of basilar membrane Shearing action of basilar membrane and tectorial membrane causes cilia to bend Opens mechanically gated ion channels via pull on tip links Inward current causes graded potential and release of neurotransmitter glutamate from hair cell onto sensory neuron Cochlear fibers transmit impulses to brain © 2013 Pearson Education, Inc.

30 Hair cell transduction by ion channel opening
Source: Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Siegel GJ, Agranoff BW, Albers RW, et al., editors; Downloaded from

31 Sensory pathway for hearing
Hair cells in specific area of basilar membrane become stimulated Sensory neuron axons (cell bodies in spiral ganglion) make up cochlear branch of vestibulocochlear nerve (VIII) Sensory neuron axons synapse onto neurons in cochlear nucleus (medulla oblongata) Information ascends bilaterally (often synapsing on the way) to inferior colliculus (midbrain) Inferior colliculus neurons synapse at medial geniculate nucleus (thalamus) Projection fibers from thalamus reach primary auditory cortex (temporal lobe)

32 Auditory pathway Medial geniculate nucleus of thalamus
Primary auditory cortex in temporal lobe Inferior colliculus Lateral lemniscus Superior olivary nucleus (pons- medulla junction) Midbrain Cochlear nuclei Medulla Vibrations Vestibulocochlear nerve Vibrations Spiral ganglion of cochlear nerve Bipolar cell Spiral organ © 2013 Pearson Education, Inc.

33 Tonotopic organization
Different frequency sounds excite different basilar membrane regions (apex: low frequencies; base: high frequencies) Cochlear nucleus (first auditory area in CNS) has a “map” of basilar membrane, i.e. frequency map: tonotopic map Tonotopic map seen in successive higher centers, up to & including primary auditory cortex

34 Tonotopic organization of primary auditory cortex
Source: Lynch, downloaded

35 Localizing sounds Most auditory information crosses over but some doesn’t, so brainstem and cortical areas get inputs from both ears Right versus left arrival time difference Right versus left intensity difference Both are used to localize sounds

36 Conduction deafness Sound energy is not conducted from outside world to the receptors, i.e. doesn’t make it to inner ear Causes include: Water or excess cerumen in external ear Scarring or perforation of tympanic membrane Immobility of ear ossicles (fluid, pus, tumor; otosclerosis) Otosclerosis: abnormal bony growth around stapes footplate prevents normal stapes movement.

37 Sensorineural (nerve) deafness
Most common cause of permanent deafness Damage to hair cell receptors Normal (young) range: 20–20,000 Hz; hearing loss later, high frequencies go first Loud noise, infection, some drugs Damage to nerve or to central auditory pathways

38 Hair cells in healthy and damaged cochleas
Normal organ of Corti, with tectorial membrane removed to show hair cells. Damaged organ of Corti. Scanning electron micrographs of the normal (a) and damaged (b) cochlear sensory epithelium. In the normal cochlea, the stereocilia of a single row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs) are present in an orderly array. In the damaged cochlea, hair cells are missing, and stereocilia are abnormal, leading to hearing loss. Duan et al. (1) present data indicating that hair cell damage can be prevented by protecting the postsynaptic structures of their associated sensory neurons. (Micrographs are courtesy of Elizabeth M. Keithley.)‏ Ryan AF. Protection of auditory receptors and neurons: evidence for interactive damage. PNAS 97: , 2000. ©2000 by National Academy of Sciences

39 Treating Sensorineural Deafness
Cochlear implants for congenital or age/noise cochlear damage Convert sound energy into electrical signals Inserted into drilled recess in temporal bone So effective that deaf children can learn to speak © 2013 Pearson Education, Inc.


Download ppt "Special Senses: Hearing Slides mostly © Marieb & Hoehn 9th ed."

Similar presentations


Ads by Google