Download presentation
Presentation is loading. Please wait.
1
Supervisor: Prof. Mikhail V. Sorin
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Hossein Akbari Supervisor: Prof. Mikhail V. Sorin Mechanical Engineering Department, Universitรฉ de Sherbrooke, Sherbrooke, QC, Canada September 2019
2
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergy: Maximum useful work can be obtained between two states in a specified environment $$ only rational basis for assigning monetary values to interactions $$ Introduction Case study Results Conclusion
3
Exergetic efficiencies:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergetic efficiencies: ๐ ๐ฅ =๐( ๐ ๐ฅ , ๐ ๐ฅ ) ๐ ๐ฆ =๐( ๐ ๐ฆ , ๐ ๐ฆ ) Introduction Case study Results Conclusion
4
Exergetic efficiencies:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergetic efficiencies: ๐ ๐ฅ =๐( ๐ ๐ฅ , ๐ ๐ฅ ) ๐ ๐ฆ =๐( ๐ ๐ฆ , ๐ ๐ฆ ) Input-output efficiency Consumed-produced efficiency Fuel-product efficiency Why different exergetic efficiencies ?! Introduction Case study Results Conclusion
5
Classification of exergy:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Classification of exergy: Exergy Energy streams Material streams Heat Radiation Electrical Chemical Physical Thermal ๐๐ ๐๐ ๐ Mechanical ๐๐ ๐๐ ๐ Introduction Case study Results Conclusion
6
Exergy associated with heat: Thermal exergy:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergy associated with heat: Thermal exergy: ๐ ๐ = ๐ ๐ ๐โ ๐ 0 โ ๐ 0 ln ๐ ๐ 0 ๐ ๐ = ๐ 1โ ๐ 0 ๐ * Marmolejo-Correa D, Gundersen T., 2012, A comparison of exergy efficiency definitions with focus on low temperature processes. Energy , vol. 44, p. 477โ489. Introduction Case study Results Conclusion
7
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐๐ ๐ ๐๐ > ๐ 0 ๐๐๐ ๐ ๐๐ข๐ก > ๐ 0 : ๐๐ฅ ๐ก๐ =๐๐ฅ( ๐ ๐๐๐ , ๐ ๐๐๐ ) ๐๐ ๐ ๐๐ < ๐ 0 ๐๐๐ ๐ ๐๐ข๐ก < ๐ 0 : ๐๐ฅ ๐ก๐ =๐๐ฅ( ๐ ๐๐๐ฅ , ๐ ๐๐๐ ) ๐๐ ๐ ๐๐ > ๐ 0 ๐๐๐ ๐ ๐๐ข๐ก < ๐ 0 ) ๐๐
( ๐ ๐๐ < ๐ 0 ๐๐๐ ๐ ๐๐ข๐ก > ๐ 0 : ๐๐ฅ ๐ก๐ =๐๐ฅ( ๐ 0 , ๐ ๐๐๐ ) Transiting exergy: Exergy consumed: ๐ป๐ธ=๐๐ฅ 1 โ ๐๐ฅ ๐ก๐ Exergy produced: โ๐ธ=๐๐ฅ 2 โ ๐๐ฅ ๐ก๐ Introduction Case study Results Conclusion
8
Case study: Base case scenario: Environment temperature
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Case study: Base case scenario: Environment temperature ๐ 0 = ๐พ Environment pressure ๐ 0 = ๐๐๐ Turbine inlet pressure ๐ 4 = ๐๐๐ Expansion ratio of the turbine ๐ฝ= ๐ 4 ๐ 5 =2.5 Extraction ratio ๐
= ๐ ๐ 4 =0.3 Turbine isentropic efficiency ๐ ๐ =0.8 Pump isentropic efficiency ๐ ๐ =0.8 Heat source inlet temperature ๐ 16 = ๐พ Heat source mass flow rate ๐ 16 = ๐๐ ๐ Cooling water inlet temperature ๐ 18 = ๐พ Evaporation temperature ๐ 12 = ๐พ Temperature difference โ๐= ๐พ Working fluid Dimethyl ether Introduction Case study Results Conclusion
9
Ejector: suction chamber diffuser mixed flow primary flow
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Ejector: suction chamber diffuser mixed flow primary flow secondary flow constant-area section T s primary flow secondary flow mixed flow Ejector performance curve* COP Back pressure (mbar) * K. Chunnanond and S. Aphornratana, โAn experimental investigation of a steam ejector refrigerator: The analysis of the pressure profile along the ejector,โ Appl. Therm. Eng., vol. 24, no. 2โ3, pp. 311โ322, 2004. Introduction Case study Results Conclusion
10
1. Transiting efficiency:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐ผ ๐ฎ๐ = โ๐ฌ ๐ต๐ฌ ๐ป๐ธ= ๐ 5 โ๐ปex ๐ ๐ 13 โ๐ปex ๐ = ๐ 5 โ ๐๐ฅ ๐ โ ๐๐ฅ ๐ ๐ก๐ + ๐ 13 โ ๐๐ฅ ๐ โ ๐๐ฅ ๐ ๐ก๐ โ๐ธ= ๐ 5 โโex ๐ ๐ 13 โโex ๐ = ๐ 5 โ ๐๐ฅ 7 โ ๐๐ฅ ๐ ๐ก๐ + ๐ 13 โ ๐๐ฅ 7 โ ๐๐ฅ ๐ ๐ก๐ 1. Transiting efficiency: Exergy consumed: Exergy produced: Introduction Case study Results Conclusion
11
2. Input-output (Grassmann) efficiency:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle 2. Input-output (Grassmann) efficiency: Exergy consumed: ๐ป๐ธ=๐ธ 5 + ๐ธ 13 Exergy produced: โ๐ธ=๐ธ 7 T s primary flow secondary flow mixed flow ๐ ๐บ๐ = ๐ ๐ 13 โ ๐๐ฅ 7 ๐ 5 โ ๐๐ฅ 5 + ๐ 13 โ ๐๐ฅ 13 = ๐ธ 7 ๐ธ 5 + ๐ธ 13 5 7 mixed flow (7) primary flow (5) secondary flow (13) 13 Introduction Case study Results Conclusion
12
Primary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐ 5 โ ๐ธ ๐ ๐ป ๐ธ ๐ ๐ป ๐ธ ๐ ๐ท ๐ธ 7 ๐ ๐ 13 ๐ ๐กโ ๐๐๐ ๐๐ โ ๐๐ ๐ % 900 81.27 5.42 338.99 263.14 859.9 0.2523 2.2304 19.1 1000 104.02 6.95 390.9 293.83 907.9 0.3239 2.8627 20.6 1125 128.52 8.61 448.72 328.81 959.8 0.4012 3.5454 22.2 1285 155.28 10.42 514.02 369.16 1016.7 0.4856 4.2912 23.9 1500 184.89 12.42 589.1 416.63 1080 0.5790 5.1161 25.9 โ Primary flow pressure: ๐ ๐กโ = ๐ ๐๐๐ก + ๐ ๐๐ฃ ๐ ๐๐๐ Grassmann โ๐ธ=๐ธ 7 = ๐ ๐ 13 โ ๐๐ฅ 7 Transiting โ๐ธ= ๐ 13 โ ๐๐ฅ 7 โ ๐๐ฅ ๐ ๐ก๐ Introduction Case study Results Conclusion
13
Primary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐ 5 โ ๐ธ ๐ ๐ป ๐ธ ๐ ๐ป ๐ธ ๐ ๐ท ๐ธ 7 ๐ ๐ 13 ๐ ๐กโ ๐๐๐ ๐๐ โ ๐๐ ๐ % 900 81.27 5.42 338.99 263.14 859.9 0.2523 2.2304 19.1 1000 104.02 6.95 390.9 293.83 907.9 0.3239 2.8627 20.6 1125 128.52 8.61 448.72 328.81 959.8 0.4012 3.5454 22.2 1285 155.28 10.42 514.02 369.16 1016.7 0.4856 4.2912 23.9 1500 184.89 12.42 589.1 416.63 1080 0.5790 5.1161 25.9 โ Primary flow pressure: ๐ ๐กโ = ๐ ๐๐๐ก + ๐ ๐๐ฃ ๐ ๐๐๐ Grassmann โ๐ธ=๐ธ 7 = ๐ ๐ 13 โ ๐๐ฅ 7 Transiting โ๐ธ= ๐ 13 โ ๐๐ฅ 7 โ ๐๐ฅ ๐ ๐ก๐ Introduction Case study Results Conclusion
14
Secondary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐ 13 โ ๐ธ ๐ ๐ป ๐ธ ๐ ๐ป ๐ธ ๐ ๐ท ๐ธ 7 ๐ ๐ ๐กโ ๐๐๐ ๐๐ โ % 164.8 14.28 1.019 321.53 308.27 725.1 0.0299 13.7 192.2 51.61 2.559 331.16 283.11 784.6 0.1297 16.1 223.0 81.27 5.42 338.99 263.14 859.9 0.2524 19.1 257.5 102.34 6.622 345.28 249.56 953.4 0.4086 23.0 295.8 112.69 7.197 350.24 244.75 1091.8 0.6165 28.2 โ โ Secondary flow pressure: Introduction Case study Results Conclusion
15
Back pressure: Introduction Case study Results Conclusion
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐ 7 โ ๐ธ ๐ ๐ป ๐ธ ๐ ๐ป ๐ธ ๐ ๐ท ๐ธ 7 ๐ ๐ ๐กโ ๐๐๐ ๐๐ โ % 410.9 104.8 7.8 372.4 275.3 890.5 0.363 22.1 437.5 81.3 5.4 339.0 263.1 859.9 0.252 19.1 465.3 56.1 3.4 305.2 252.5 834.1 0.158 16.6 494.5 29.6 1.6 271.0 243.1 811.9 0.076 14.3 โ โ Back pressure: Introduction Case study Results Conclusion
16
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Conclusions: Transiting exergy provides us with clear and systematic definitions of consumed and produced exergies in a process for different conditions while the other definitions encounter a serious problem in crossing ambient temperature conditions. The transiting approach establishes a logical link between the produced exergy and the most important ejectorโs parameter (entrainment ratio). Grassmann efficiency cannot reflect the technical purpose of the ejector. Introduction Case study Results Conclusion
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.