Presentation is loading. Please wait.

Presentation is loading. Please wait.

Supervisor: Prof. Mikhail V. Sorin

Similar presentations


Presentation on theme: "Supervisor: Prof. Mikhail V. Sorin"โ€” Presentation transcript:

1 Supervisor: Prof. Mikhail V. Sorin
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Hossein Akbari Supervisor: Prof. Mikhail V. Sorin Mechanical Engineering Department, Universitรฉ de Sherbrooke, Sherbrooke, QC, Canada September 2019

2 Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergy: Maximum useful work can be obtained between two states in a specified environment $$ only rational basis for assigning monetary values to interactions $$ Introduction Case study Results Conclusion

3 Exergetic efficiencies:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergetic efficiencies: ๐‘’ ๐‘ฅ =๐‘“( ๐‘‡ ๐‘ฅ , ๐‘  ๐‘ฅ ) ๐‘’ ๐‘ฆ =๐‘“( ๐‘‡ ๐‘ฆ , ๐‘  ๐‘ฆ ) Introduction Case study Results Conclusion

4 Exergetic efficiencies:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergetic efficiencies: ๐‘’ ๐‘ฅ =๐‘“( ๐‘‡ ๐‘ฅ , ๐‘  ๐‘ฅ ) ๐‘’ ๐‘ฆ =๐‘“( ๐‘‡ ๐‘ฆ , ๐‘  ๐‘ฆ ) Input-output efficiency Consumed-produced efficiency Fuel-product efficiency Why different exergetic efficiencies ?! Introduction Case study Results Conclusion

5 Classification of exergy:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Classification of exergy: Exergy Energy streams Material streams Heat Radiation Electrical Chemical Physical Thermal ๐œ•๐‘’ ๐œ•๐‘‡ ๐‘ƒ Mechanical ๐œ•๐‘’ ๐œ•๐‘ƒ ๐‘‡ Introduction Case study Results Conclusion

6 Exergy associated with heat: Thermal exergy:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Exergy associated with heat: Thermal exergy: ๐‘’ ๐‘‡ = ๐‘ ๐‘ƒ ๐‘‡โˆ’ ๐‘‡ 0 โˆ’ ๐‘‡ 0 ln ๐‘‡ ๐‘‡ 0 ๐‘’ ๐‘ž = ๐‘ž 1โˆ’ ๐‘‡ 0 ๐‘‡ * Marmolejo-Correa D, Gundersen T., 2012, A comparison of exergy efficiency definitions with focus on low temperature processes. Energy , vol. 44, p. 477โ€“489. Introduction Case study Results Conclusion

7 Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐‘–๐‘“ ๐‘‡ ๐‘–๐‘› > ๐‘‡ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‡ ๐‘œ๐‘ข๐‘ก > ๐‘‡ 0 : ๐‘’๐‘ฅ ๐‘ก๐‘Ÿ =๐‘’๐‘ฅ( ๐‘‡ ๐‘š๐‘–๐‘› , ๐‘ƒ ๐‘š๐‘–๐‘› ) ๐‘–๐‘“ ๐‘‡ ๐‘–๐‘› < ๐‘‡ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‡ ๐‘œ๐‘ข๐‘ก < ๐‘‡ 0 : ๐‘’๐‘ฅ ๐‘ก๐‘Ÿ =๐‘’๐‘ฅ( ๐‘‡ ๐‘š๐‘Ž๐‘ฅ , ๐‘ƒ ๐‘š๐‘–๐‘› ) ๐‘–๐‘“ ๐‘‡ ๐‘–๐‘› > ๐‘‡ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‡ ๐‘œ๐‘ข๐‘ก < ๐‘‡ 0 ) ๐‘‚๐‘… ( ๐‘‡ ๐‘–๐‘› < ๐‘‡ 0 ๐‘Ž๐‘›๐‘‘ ๐‘‡ ๐‘œ๐‘ข๐‘ก > ๐‘‡ 0 : ๐‘’๐‘ฅ ๐‘ก๐‘Ÿ =๐‘’๐‘ฅ( ๐‘‡ 0 , ๐‘ƒ ๐‘š๐‘–๐‘› ) Transiting exergy: Exergy consumed: ๐›ป๐ธ=๐‘’๐‘ฅ 1 โˆ’ ๐‘’๐‘ฅ ๐‘ก๐‘Ÿ Exergy produced: โˆ†๐ธ=๐‘’๐‘ฅ 2 โˆ’ ๐‘’๐‘ฅ ๐‘ก๐‘Ÿ Introduction Case study Results Conclusion

8 Case study: Base case scenario: Environment temperature
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Case study: Base case scenario: Environment temperature ๐‘‡ 0 = ๐พ Environment pressure ๐‘ƒ 0 = ๐‘˜๐‘ƒ๐‘Ž Turbine inlet pressure ๐‘ƒ 4 = ๐‘˜๐‘ƒ๐‘Ž Expansion ratio of the turbine ๐›ฝ= ๐‘ƒ 4 ๐‘ƒ 5 =2.5 Extraction ratio ๐‘…= ๐‘š ๐‘š 4 =0.3 Turbine isentropic efficiency ๐œ‚ ๐‘‡ =0.8 Pump isentropic efficiency ๐œ‚ ๐‘ƒ =0.8 Heat source inlet temperature ๐‘‡ 16 = ๐พ Heat source mass flow rate ๐‘š 16 = ๐‘˜๐‘” ๐‘  Cooling water inlet temperature ๐‘‡ 18 = ๐พ Evaporation temperature ๐‘‡ 12 = ๐พ Temperature difference โˆ†๐‘‡= ๐พ Working fluid Dimethyl ether Introduction Case study Results Conclusion

9 Ejector: suction chamber diffuser mixed flow primary flow
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Ejector: suction chamber diffuser mixed flow primary flow secondary flow constant-area section T s primary flow secondary flow mixed flow Ejector performance curve* COP Back pressure (mbar) * K. Chunnanond and S. Aphornratana, โ€œAn experimental investigation of a steam ejector refrigerator: The analysis of the pressure profile along the ejector,โ€ Appl. Therm. Eng., vol. 24, no. 2โ€“3, pp. 311โ€“322, 2004. Introduction Case study Results Conclusion

10 1. Transiting efficiency:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐œผ ๐‘ฎ๐’“ = โˆ†๐‘ฌ ๐œต๐‘ฌ ๐›ป๐ธ= ๐‘š 5 โˆ™๐›ปex ๐‘ ๐‘š 13 โˆ™๐›ปex ๐‘  = ๐‘š 5 โˆ™ ๐‘’๐‘ฅ ๐‘ โˆ’ ๐‘’๐‘ฅ ๐‘ ๐‘ก๐‘Ÿ + ๐‘š 13 โˆ™ ๐‘’๐‘ฅ ๐‘  โˆ’ ๐‘’๐‘ฅ ๐‘  ๐‘ก๐‘Ÿ โˆ†๐ธ= ๐‘š 5 โˆ™โˆ†ex ๐‘ ๐‘š 13 โˆ™โˆ†ex ๐‘  = ๐‘š 5 โˆ™ ๐‘’๐‘ฅ 7 โˆ’ ๐‘’๐‘ฅ ๐‘ ๐‘ก๐‘Ÿ + ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 โˆ’ ๐‘’๐‘ฅ ๐‘  ๐‘ก๐‘Ÿ 1. Transiting efficiency: Exergy consumed: Exergy produced: Introduction Case study Results Conclusion

11 2. Input-output (Grassmann) efficiency:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle 2. Input-output (Grassmann) efficiency: Exergy consumed: ๐›ป๐ธ=๐ธ 5 + ๐ธ 13 Exergy produced: โˆ†๐ธ=๐ธ 7 T s primary flow secondary flow mixed flow ๐œ‚ ๐บ๐‘Ÿ = ๐‘š ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 ๐‘š 5 โˆ™ ๐‘’๐‘ฅ 5 + ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 13 = ๐ธ 7 ๐ธ 5 + ๐ธ 13 5 7 mixed flow (7) primary flow (5) secondary flow (13) 13 Introduction Case study Results Conclusion

12 Primary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐‘ƒ 5 โˆ† ๐ธ ๐‘  ๐›ป ๐ธ ๐‘  ๐›ป ๐ธ ๐‘ƒ ๐ท ๐ธ 7 ๐œ” ๐‘š 13 ๐œ‚ ๐‘กโ„Ž ๐‘˜๐‘ƒ๐‘Ž ๐‘˜๐‘Š โˆ’ ๐‘˜๐‘” ๐‘  % 900 81.27 5.42 338.99 263.14 859.9 0.2523 2.2304 19.1 1000 104.02 6.95 390.9 293.83 907.9 0.3239 2.8627 20.6 1125 128.52 8.61 448.72 328.81 959.8 0.4012 3.5454 22.2 1285 155.28 10.42 514.02 369.16 1016.7 0.4856 4.2912 23.9 1500 184.89 12.42 589.1 416.63 1080 0.5790 5.1161 25.9 โ†‘ Primary flow pressure: ๐œ‚ ๐‘กโ„Ž = ๐‘Š ๐‘›๐‘’๐‘ก + ๐‘„ ๐‘’๐‘ฃ ๐‘„ ๐‘”๐‘’๐‘› Grassmann โˆ†๐ธ=๐ธ 7 = ๐‘š ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 Transiting โˆ†๐ธ= ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 โˆ’ ๐‘’๐‘ฅ ๐‘  ๐‘ก๐‘Ÿ Introduction Case study Results Conclusion

13 Primary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐‘ƒ 5 โˆ† ๐ธ ๐‘  ๐›ป ๐ธ ๐‘  ๐›ป ๐ธ ๐‘ƒ ๐ท ๐ธ 7 ๐œ” ๐‘š 13 ๐œ‚ ๐‘กโ„Ž ๐‘˜๐‘ƒ๐‘Ž ๐‘˜๐‘Š โˆ’ ๐‘˜๐‘” ๐‘  % 900 81.27 5.42 338.99 263.14 859.9 0.2523 2.2304 19.1 1000 104.02 6.95 390.9 293.83 907.9 0.3239 2.8627 20.6 1125 128.52 8.61 448.72 328.81 959.8 0.4012 3.5454 22.2 1285 155.28 10.42 514.02 369.16 1016.7 0.4856 4.2912 23.9 1500 184.89 12.42 589.1 416.63 1080 0.5790 5.1161 25.9 โ†‘ Primary flow pressure: ๐œ‚ ๐‘กโ„Ž = ๐‘Š ๐‘›๐‘’๐‘ก + ๐‘„ ๐‘’๐‘ฃ ๐‘„ ๐‘”๐‘’๐‘› Grassmann โˆ†๐ธ=๐ธ 7 = ๐‘š ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 Transiting โˆ†๐ธ= ๐‘š 13 โˆ™ ๐‘’๐‘ฅ 7 โˆ’ ๐‘’๐‘ฅ ๐‘  ๐‘ก๐‘Ÿ Introduction Case study Results Conclusion

14 Secondary flow pressure:
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐‘ƒ 13 โˆ† ๐ธ ๐‘  ๐›ป ๐ธ ๐‘  ๐›ป ๐ธ ๐‘ƒ ๐ท ๐ธ 7 ๐œ” ๐œ‚ ๐‘กโ„Ž ๐‘˜๐‘ƒ๐‘Ž ๐‘˜๐‘Š โˆ’ % 164.8 14.28 1.019 321.53 308.27 725.1 0.0299 13.7 192.2 51.61 2.559 331.16 283.11 784.6 0.1297 16.1 223.0 81.27 5.42 338.99 263.14 859.9 0.2524 19.1 257.5 102.34 6.622 345.28 249.56 953.4 0.4086 23.0 295.8 112.69 7.197 350.24 244.75 1091.8 0.6165 28.2 โ†‘ โ†“ Secondary flow pressure: Introduction Case study Results Conclusion

15 Back pressure: Introduction Case study Results Conclusion
Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle ๐‘ƒ 7 โˆ† ๐ธ ๐‘  ๐›ป ๐ธ ๐‘  ๐›ป ๐ธ ๐‘ƒ ๐ท ๐ธ 7 ๐œ” ๐œ‚ ๐‘กโ„Ž ๐‘˜๐‘ƒ๐‘Ž ๐‘˜๐‘Š โˆ’ % 410.9 104.8 7.8 372.4 275.3 890.5 0.363 22.1 437.5 81.3 5.4 339.0 263.1 859.9 0.252 19.1 465.3 56.1 3.4 305.2 252.5 834.1 0.158 16.6 494.5 29.6 1.6 271.0 243.1 811.9 0.076 14.3 โ†‘ โ†“ Back pressure: Introduction Case study Results Conclusion

16 Exergetic efficiency of the ejector operating across ambient temperature in a combined power and ejector-refrigeration cycle Conclusions: Transiting exergy provides us with clear and systematic definitions of consumed and produced exergies in a process for different conditions while the other definitions encounter a serious problem in crossing ambient temperature conditions. The transiting approach establishes a logical link between the produced exergy and the most important ejectorโ€™s parameter (entrainment ratio). Grassmann efficiency cannot reflect the technical purpose of the ejector. Introduction Case study Results Conclusion


Download ppt "Supervisor: Prof. Mikhail V. Sorin"

Similar presentations


Ads by Google