Download presentation
Presentation is loading. Please wait.
Published byἸοκάστη Αγγελίδης Modified over 5 years ago
1
Spin Polarization due to Tensor Fields in NJL Model
Tomoyuki Maruyama, BRS, Nihon Univ. Collaborators T. Tatsumi, Dep. of Phys., Kyoto Univ. T. Tatsumi, Phys. Lett. B489 (2000) 280.
2
Consider Spin-Polarization (SP) for Quark Matter
§1 Introductio Neutron Stars (NSs) Magnetic Field Magnetor ~ 1015 Gauss, Normal NS ~ 1012 Gauss Non-Central Heavy-Ion Collisions ~ 1015 Gauss D. E. Kharzeev, et al., NPA 803, 227 (08) How to keep the Strong Magnetic Field One Possible Candidate Spin-Polarization Matter T. Tatsumi, Phys. Lett. B489 (2000) 280. Spin-Spin Interaction for Quark in NJL-Type Vector-Vector (One-Gluon Exchange) Fock Term ⇒ - σ·σ ⇒ spin-alignment Consider Spin-Polarization (SP) for Quark Matter NM in RMFT, T.M & T.Tatsumi, Nucl. Phys. A693, 710
3
Two Type Spin-Forces NJL Type (Zero-Range)
Energy Density In Quark Matter Axial Vector Density Tensor Density Dirac Eq. ℎ 𝑠𝑝 𝑢 𝐩,𝑠 = 𝜶∙𝒑+𝑚+ 𝛴 𝑧 𝐴+𝛽 𝛴 𝑧 𝑈 𝑢 𝒑,𝑠 =e 𝒑,𝑠 𝑢 𝐩,𝑠 Mean-Fields 𝐴= 𝐺 𝐴 𝜌 𝐴 , 𝑈= 𝐺 𝑇 𝜌 𝑇 When GT (GA) < 0, Non-Zero U (A) Spin-Polarization It is Very Difficult to calculate SP- Phase with Both AV and T Only A (AV-Type) or Only U (T-Type) SP
4
Two Type Spin Polarization, AV-type & T-type
Single Particle Energy When U = 0, When A = 0, Momentum Distribution at e = 3m 𝐴=0, 𝑈=3𝑚 𝐴=3𝑚, 𝑈=0 T-Type AV-Type e = 3m
5
Phase-Diagram between Paramag. and Ferromag.
: a condition of Spontaneous Spin-Polarization Large Mass AV > T Small Mass T > AV Mass Zero Limit No AV-Type SP T-Type survives
6
One-Gluon Exchange Force ⇒ AV-Type Spin-Spin interaction
T. Tastumi, PL B489, 280 (2000) Spin-Polarization Phase below Chiral Restoration Density NJL with AV-Int E. Nakano D-Thesis, S.Maedan PTP118, 729 (2008) Spin-P phase appears in small density region below the chiral retsroring AV –Int does not work in m = 0 limit T-int works even if m = 0 Fixed Mass : T. Tatsumi, E. Nakano and K. Nawa, Dark Matter, p.39 (Nova Science Pub., NY, (06). Zero Mass Y. Tsue, J. de. Providencia, C. Providencia and M. Yamamura Prog. Theor. Phys. (2012).
7
§2 Formalizm Lagrangian Dirac Eq. Mean Field Approximation NJL + T-int
SU(2) Chiral Symmetry Dirac Eq. Mean Field Approximation
8
Scalar Density Medium Part Vacuum Part Proper Time Appr. Tensor Density Strong Cut-Off and Regularization Dependence Proper-Time & Energy Cut-Off unfavor to Spin-Polarization (SP) Momentum Cut-Off & Effective Potential Method favor to SP Ignoring Vacuum Parts of T-Density in this work
9
§3 Results Parameters Zero Current Mass m = 0 Hartree Equation
E. Nakano and T. Tatsumi, PR D71, (05). Hartree Equation Spontaneous SP Condition
10
Results of PM1
11
Results of PM2 Two Kinds of SP phase
Chiral Breaking SP Phase ( M ≠ 0 ) Chiral Restoring SP Phase ( M = 0 ) 1st Order Transition
12
Critical Density of SP phase
Chiral Breaking SP PM2 PM1 Chiral Restoring SP PM1 PM2 Critical Density of Chiral Phase Transition in Spin-Saturated Phase
13
§5 Summary Hybrid SP phase with AV and T interaction
NJL model with Scalar and Tensor Interaction Spontaneous Spin-Polarization and Chiral Restoration T-Type Spin Polarization Phases Chiral Breaking SP Phase ( M ≠ 0 ) when the coupling -GT is large Chiral Restoring SP Phase ( M = 0 ) with any GT GT < 0 : Iso-Scalar SP Same Spin-Directionss for u an d, GT > 0 : Iso-Vector SP Opposite Spin-Directions (Stronger Mag Fld) Interaction Breaking of U(1)A ChS makes Spin-Polarization Mass, Magnetic Field, Tensor Interaction Hybrid SP phase with AV and T interaction m = 0 case T.M., E.Nakano, K.Yanase, N.Yoshinaga, PRD 97, (18) T-Type SP → U(1)A ChS Breaking → AV-T Mixed Type (Larger SP)
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.