Download presentation
Presentation is loading. Please wait.
Published byΤρυφωσα Βουρδουμπάς Modified over 5 years ago
1
Physics and Observations of Pulsar Wind Nebulae
Stephen C.-Y. Ng HKU
2
Why Study PWNe? Important TeV sources Cosmic ray acceleration
Relativistic shock physics 27 TeV PWNe: main Galactic TeV sources
3
Why Study PWNe? Important TeV sources Cosmic ray acceleration
Relativistic shock physics Aguilar et al. (2013) e+ excess: dark matter decay? Or pulsars/PWNe? 16/8/18 VHEPU
4
Why Study PWNe? Important TeV sources Cosmic ray acceleration
Relativistic shock physics Sironi & Spitkovsky (2011) 16/8/18 VHEPU
5
Pulsars Rapidly spinning, strongly magnetized neutron stars 𝐵≈ 10 12 G
𝑃=10−100ms 𝐸∼ 𝑃 −1 𝐵 12 Vc m −1 16/8/18 VHEPU
6
Pulsar Wind Where does pulsar rotational energy go? 𝐸 >1035erg s −1
< 10% in radiation (mostly -rays) > 90% in pulsar winds 16/8/18 VHEPU
7
Pulsar Wind D. Page
8
Pulsar Wind Nebula Cerutti et al. (2014) 16/8/18 VHEPU
9
Pulsar Wind Nebula
10
Broadband Emission NASA/CXC/ESA/2MASS/NRAO 16/8/18 VHEPU
11
Crab Nebula Synchrotron IC 16/8/18 Abdo et al. (2010a)
12
Radio PWNe Synchrotron cooling time: Preserve injection spectrum
𝑡 𝑐𝑜𝑜𝑙 ≈2× 𝐵 10𝜇G − 𝜈 1GHz − 1 2 yr Preserve injection spectrum Trace pulsar motion to reveal birth site Polarization observations => B-field structure Another regime 16/8/18 VHEPU
13
X-ray PWNe Synchrotron cooling time: Fast cooling time
𝑡 𝑐𝑜𝑜𝑙 ≈1.2× 𝐵 10𝜇G − 𝐸 1keV − 1 2 yr Fast cooling time Most recent conditions Another regime 16/8/18 VHEPU
14
TeV PWNe TeV emitting particles: X-ray emitting particles:
𝐸 𝑒 =19 𝐸 1TeV TeV X-ray emitting particles: 𝐸 𝑒 =70 𝐵 10𝜇G − 𝐸 1keV TeV IC cooling time: 𝑡 𝑐𝑜𝑜𝑙 ≈5.9× 𝐸 1TeV −1 𝑈 rad 0.26eVc m −3 −1 yr 16/8/18 VHEPU
15
PWN Evolution van der Swaluw et al. (2003) 16/8/18 VHEPU
16
Free Expansion van der Swaluw et al. (2003) 16/8/18 VHEPU
17
Toroidal B-field Porth et al. (2014) 16/8/18 VHEPU
18
Torus+Jet Crab Vela Kes 75 G54.1+0.3 3C 58 Sewead et al. (2006)
Pavlov et al. (2001) Vela Kes 75 Ng et al. (2008) Temim et al. (2010) G Slane et al. (2004) 3C 58 16/8/18 VHEPU
19
Torus Modeling Ng & Romani (2004; 2008) Crab Vela B1706-44 J2221+6114
J / G J B J / 3C58 J / G Viewing geometry J / N157B B J / G Ng & Romani (2004; 2008)
20
Time Variability Highly dynamic systems 16/8/18 VHEPU NASA/ASU/Hester
21
Vela Jet Durant et al. (2013) 16/8/18 VHEPU
22
Crab -ray Flares Buehler et al. (2012) 16/8/18 VHEPU
23
Crab Flares 16/8/18 VHEPU Striani et al. (2013)
24
Flare Spectrum Weisskopf et al. (2013) 16/8/18 VHEPU
25
PSR J18460258 / Kes 75 1 1 Integral 20-100keV Chandra 0.5-10keV
McBride et al. (2008) Djannati-Atai et al. (2007)
26
PSR J18460258 / Kes 75 2000 2006 2009 Ng et al. (2008); Livingstone, Ng et al. (2011) Reynolds et al. (2018) 16/8/18 VHEPU
27
Hand of God: MSH 15–52 16/8/18 NASA/CXC/SAO/Slane et al.
28
Hand of God: MSH 15–52 Abdo et al. (2010b) 16/8/18 VHEPU
29
Hand of God: MSH 15–52 NuSTAR INTEGRAL Forot et al. (2006)
An et al. (2014) Forot et al. (2006) INTEGRAL 16/8/18 VHEPU
30
Hand of God: MSH 15–52 Fermi LAT H.E.S.S. Aharonian et al. (2005)
Abdo et al. (2010b) Fermi LAT H.E.S.S. Aharonian et al. (2005) Aharonian et al. (2005) 16/8/18 VHEPU
31
Hand of God: MSH 15–52 16/8/18 VHEPU Leung, Ng, et al. (in prep.)
32
Hand of God: MSH 15–52 Preliminary Preliminary
Leung, Ng, et al. (in prep.) 16/8/18 VHEPU
33
Hand of God: MSH 15–52 Preliminary Preliminary
Leung, Ng, et al. (in prep.) 16/8/18 VHEPU
34
Reverse-Shock Interaction
van der Swaluw et al. (2003) 16/8/18 VHEPU
35
The Snail G327.1–1.1 Radio/ X-ray Temim et al. (2009) 16/8/18 VHEPU
36
The Snail G327.1–1.1 Radio TeV HESS Collaboration (2018)
16/8/18 VHEPU Ma, Ng, et al. (2016)
37
16/8/18 VHEPU Temim et al. (2015)
38
Vela X Chandra H.E.S.S. Chandra INTEGRAL Fermi Mattana et al. (2011)
Durant et al. (2013) Chandra Vela X Aharonian et al. (2006) H.E.S.S. Chandra Mattana et al. (2011) Mattana et al. (2011) INTEGRAL Grondin et al. (2013) Fermi radio x-ray offset NASA/SAO/CXC 16/8/18 VHEPU
39
Vela X Slane et al. (2018) 16/8/18 VHEPU
40
Bow Shock van der Swaluw et al. (2003) 16/8/18 VHEPU
41
Bow Shocks Supersonic motion in the ISM bow shocks ISM ram pressure
Pulsar wind pressure CXC/Weiss 16/8/18 VHEPU
42
Geminga PWN Chandra HAWC Abeysekara et al. (2017)
Posselt et al. (2017) Chandra Abeysekara et al. (2017) HAWC 16/8/18 VHEPU
43
Elongated PWNe The Frying Pan The Snail Ma, Ng et al. (2016)
16/8/18 VHEPU
44
PSR J1509–5850 16/8/18 Romanova et al. (2005) Ng et al. (2010)
45
PSR J1015–5719 Guitar Nebula Ng et al. (2017) Kerkwijk & Ingle (2008)
16/8/18
46
Lighthouse Nebula 16/8/18 VHEPU Pavan et al (2014)
47
Lighthouse Nebula Preliminary 16/8/18 Wen, Ng, et al. (in prep.)
48
Modeling PWNe Hydrodynamic simulations MHD simulations
Temim et al. (2015) Modeling PWNe Hydrodynamic simulations Reverse shock / ISM interaction MHD simulations Assume B-field geometry, latitude dependent wind, injection spectrum Multiwavelength spectra Pulsar/SNR and particle evolution Volpi et al. (2008) Gelfand et al. (2009) 16/8/18 VHEPU
49
Open Questions Ab initio: from magnetosphere to termination shock?
𝜎-problem? Particle acceleration in relativistic shocks? Variability? Jet formation? Protons/ions in pulsar wind? Cosmic ray diffusion in PWNe? 16/8/18 VHEPU
50
Future Prospects CTA ATHENA / IXPE / eXTP SKA
51
Summary PWNe are important:
TeV sources in the Galaxy laboratories for studying relativistic shock physics cosmic ray acceleration sites TeV emission found at different evolutionary stages Multiwavelength observations/modeling needed 16/8/18 VHEPU
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.