Presentation is loading. Please wait.

Presentation is loading. Please wait.

Random-Access Memory (RAM)

Similar presentations


Presentation on theme: "Random-Access Memory (RAM)"— Presentation transcript:

1 Random-Access Memory (RAM)
Princess Sumaya University Digital Logic Design Random-Access Memory (RAM) Data Storage (Volatile) Locations (Address) Byte or Word Data input Memory unit 16 x 8 Address Read Write Data output Dr. Bassam Kahhaleh

2 Random-Access Memory (RAM)
Princess Sumaya University Digital Logic Design Random-Access Memory (RAM) Data Storage (Volatile) Locations (Address) Byte or Word m Data input Memory unit 2k x m k Address 10 Address lines  1024 locations = 1 K Read Write m Data output Dr. Bassam Kahhaleh

3 Memory Decoding Memory Array Input Data I1 AddressLines I0 1
BC Input Data Output Data 1 2 3 2 x 4 Decoder I1 I0 E AddressLines Memory Enable Read/Write

4 Memory Decoding Memory Cell Select BC Input Output Read/Write

5 Programmable Configurations
Read Only Memory (ROM) – a fixed array of AND gates and a programmable array of OR gates Programmable Array Logic (PAL)Ò – a programmable array of AND gates feeding a fixed array of OR gates. Programmable Logic Array (PLA) – a programmable array of AND gates feeding a programmable array of OR gates. Complex Programmable Logic Device (CPLD) /Field- Programmable Gate Array (FPGA) – complex enough to be called “architectures”

6 ROM, PAL and PLA Configurations
Fixed Programmable Programmable Inputs AND array Outputs Connections OR array (decoder) (a) Programmable read-only memory (PROM) Programmable Inputs Programmable Fixed Outputs Connections AND array OR array (b) Programmable array logic (PAL) device Programmable Programmable Programmable Programmable Inputs Outputs Connections AND array Connections OR array (c) Programmable logic array (PLA) device

7 Read Only Memory Read Only Memories (ROM) or Programmable Read Only Memories (PROM) have: N input lines, M output lines, and 2N decoded minterms. Fixed AND array with 2N outputs implementing all N-literal minterms. Programmable OR Array with M outputs lines to form up to M sum of minterm expressions. A program for a ROM or PROM is simply a multiple-output truth table If a 1 entry, a connection is made to the corresponding minterm for the corresponding output If a 0, no connection is made

8 Read Only Memory Example
Example: A 8 X 4 ROM (N = 3 input lines, M= 4 output lines) The fixed "AND" array is a “decoder” with 3 inputs and 8 outputs implementing minterms. The programmable "OR“ array uses a single line to represent all inputs to an OR gate. An “X” in the array corresponds to attaching the minterm to the OR Read Example: For input (A2,A1,A0) = 011, output is (F3,F2,F1,F0 ) = 0011. What are functions F3, F2 , F1 and F0 in terms of (A2, A1, A0)? D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0 A B C F0 F1 F2 F3 X F3 = D7 + D5 + D2 = A2 A0 + A2’ A1 A0’ F2 = D7 + D0 = A2 A1 A0 + A2’ A1’ A0’ F1 = D4 + D1 = A1 A1’ A0’ + A2’ A1’ A0 F0 = D7 + D5 + D1 = A2 A0 + A1’ A0

9 Read-Only Memory (ROM)
2k x m k Address Memory Enable m Data output

10 Read-Only Memory (ROM)
Conventional Symbol Array Logic Symbol

11 Read-Only Memory (ROM)
8 x 4 ROM 3 x 8 Decoder 1 2 I2 AddressLines 3 I1 4 I0 5 Memory Enable 6 E 7 Output Data

12 Read-Only Memory (ROM)
8 x 4 ROM 3 x 8 Decoder Address Data 1 2 A2 I2 3 A1 I1 4 A0 I0 5 6 1 E 7 D3 D2 D1 D0

13 Types of ROMs Mask Programmed ROM Programmable Read-Only Memory (PROM)
Programmed during manufacturing Programmable Read-Only Memory (PROM) Blow out fuses to produce ‘0’ Erasable Programmable ROM (EPROM) Erase all data by Ultra Violet exposure Electrically Erasable PROM (EEPROM) Erase the required data using an electrical signal

14 Programmable Logic Device (PLD)
Boolean Functions: Sums-of-Products AND-plane followed by OR-plane

15 Programmable Logic Device (PLD)
PROM PAL PLA Fixed AND array (Decoder) Programmable OR array Inputs Outputs Programmable AND array Fixed OR array Inputs Outputs Programmable AND array OR array Inputs Outputs

16 Programmable Array Logic (PAL)
Example w(A,B,C,D) = ∑(2,12,13) x(A,B,C,D) = ∑(7,8,9,10,11,12,13,14,15) y(A,B,C,D) = ∑(0,2,3,4,5,6,7,8,10,11,15) z(A,B,C,D) = ∑(1,2,8,12,13) Simplify: w = ABC’ + A’B’CD’ x = A + BCD y = A’B + CD + B’D’ z = ABC’ + A’B’CD’ + AC’D’ + A’B’C’D = w + AC’D’ + A’B’C’D w A x B y C z D

17 Programmable Logic Array (PLA)
Example: F1 = AB’ + AC + A’BC’ F2 = (AC + BC)’

18 Sequential Programmable Logic Device
Basic Macrocell Logic

19 Programmable Array Logic (PAL)
The PAL is the opposite of the ROM, having a programmable set of ANDs combined with fixed ORs. Disadvantage ROM guaranteed to implement any M functions of N inputs. PAL may have too few inputs to the OR gates. Advantages For given internal complexity, a PAL can have larger N and M Some PALs have outputs that can be complemented, adding POS functions No multilevel circuit implementations in ROM (without external connections from output to input). PAL has outputs from OR terms as internal inputs to all AND terms, making implementation of multi-level circuits easier.

20 Programmable Array Logic Example
9 1 2 3 4 5 6 7 8 AND gates inputs Product term 10 11 12 F I = C B A 4 = D X 4-input, 3-output PAL with fixed, 3-input OR terms What are the equations for F1 through F4? F1 = C’ + A’B’ F2 = A’BC’ + AC + AB’ F3 = AD + BD + F1 F4 = AB + CD + F1’ F3 = AD + BD + F1 = AD + BD + A’B+ C’ = AD + BD + A’B’ + C’ F4 = AB + CD + F1’ = AB + CD + (A’B’ + C’)’ = AB + CD + AC + BC

21 Programmable Logic Array (PLA)
Compared to a ROM and a PAL, a PLA is the most flexible having a programmable set of ANDs combined with a programmable set of ORs. Advantages A PLA can have large N and M permitting implementation of equations that are impractical for a ROM (because of the number of inputs, N, required  A PLA has all of its product terms connectable to all outputs, overcoming the problem of the limited inputs to the PAL ORs Some PLAs have outputs that can be complemented, adding POS functions Disadvantage Often, the product term count limits the application of a PLA. Two-level multiple-output optimization reduces the number of product terms in an implementation, helping to fit it into a PLA.

22 Programmable Logic Array Example
Fuse intact Fuse blown 1 F 2 X A B C 3 4 A B A C B C What are the equations for F1 and F2? Could the PLA implement the functions without the XOR gates? F1 = AB +BC + AC F2 = (AB + A’B’)’ = (A’ + B’) (A + B) = A’B + AB’ No. If only SOP functions used, requires at least 5 AND gates. 3-input, 3-output PLA with 4 product terms


Download ppt "Random-Access Memory (RAM)"

Similar presentations


Ads by Google