Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hyperbolic functions.

Similar presentations


Presentation on theme: "Hyperbolic functions."— Presentation transcript:

1 Hyperbolic functions

2 FM Hyperbolic functions: Identities and Equations
KUS objectives BAT use identities for the hyperbolic functions; solve equations using the definitions and identities for hyperbolic functions Starter: Use the addition formula to show that sin 2𝑥 =2 sin 𝑥 cos 𝑥 cos 2𝑥 =1−2 𝑠𝑖𝑛 2 𝑥 cos 4𝑥 = 𝑐𝑜𝑠 2 2𝑥− 𝑠𝑖𝑛 2 2𝑥

3 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1
Notes (reminder) Hyperbolic functions have several properties in common with trigonometric functions, but they are defined in terms of exponential functions sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 ‘shine x’ ‘coshine x’ There are corresponding reciprocal functions cosech 𝑥 ≡ 2 𝑒 𝑥 − 𝑒 −𝑥 sech 𝑥 ≡ 2 𝑒 𝑥 + 𝑒 −𝑥 coth 𝑥 ≡ 1 tanh 𝑥 ≡ 𝑒 2𝑥 +1 𝑒 2𝑥 −1 ‘cosheck x’ ‘sheck x’ These definitions can simply be stated but need to be memorised

4 WB C1 Prove that 𝑎) 𝑐𝑜𝑠ℎ 2 𝑥− 𝑠𝑖𝑛ℎ 2 𝑥≡1
𝑏) sinh 𝐴+𝐵 = sinh 𝐴 cosh 𝐵 + cosh 𝐴 sinh 𝐵 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑎) 𝐿𝐻𝑆= 𝑒 𝑥 + 𝑒 −𝑥 − 𝑒 𝑥 − 𝑒 −𝑥 = 𝑒 2𝑥 +2+ 𝑒 −2𝑥 4 − 𝑒 2𝑥 −2+ 𝑒 −2𝑥 4 = 4 4 = QED 𝑏) 𝑅𝐻𝑆= 𝑒 𝐴 − 𝑒 −𝐴 𝑒 𝐵 + 𝑒 −𝐵 𝑒 𝐴 + 𝑒 −𝐴 𝑒 𝐵 − 𝑒 −𝐵 2 = 𝑒 𝐴+𝐵 + 𝑒 𝐴−𝐵 − 𝑒 −𝐴+𝐵 − 𝑒 −𝐴−𝐵 𝑒 𝐴+𝐵 − 𝑒 𝐴−𝐵 + 𝑒 −𝐴+𝐵 − 𝑒 −𝐴−𝐵 4 = 2 𝑒 𝐴+𝐵 −2 𝑒 −𝐴−𝐵 4 = 𝑒 𝐴+𝐵 − 𝑒 −𝐴−𝐵 2 = sinh (𝐴+𝐵) =𝐿𝐻𝑆 QED

5 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 𝑐𝑜𝑠ℎ 2 𝑥− 𝑠𝑖𝑛ℎ 2 𝑥≡1
Notes the addition formulae for hyperbolic functions are sinh 𝐴±𝐵 = sinh 𝐴 cosh 𝐵 ± cosh 𝐴 sinh 𝐵 cosh 𝐴±𝐵 = cosh 𝐴 cosh 𝐵 ± sinh 𝐴 sinh 𝐵 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 𝑐𝑜𝑠ℎ 2 𝑥− 𝑠𝑖𝑛ℎ 2 𝑥≡1

6 WB C2 a) prove that cosh 2𝑥 =1+2 𝑠𝑖𝑛ℎ 2 𝑥
b) Write the hyperbolic identity corresponding to cos 2𝑥 =2 𝑐𝑜𝑠 2 𝑥−1 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑎) 𝑅𝐻𝑆= 𝑒 𝑥 − 𝑒 −𝑥 OSBORNS RULE sin 𝑥 → sinh 𝑥 cos 𝑥 → cosh 𝑥 Replace any product of two sin terms by minus the product of sinh terms e.g. sinAsinB → - sinh A sinhB e.g. tanAtanB → - tanh A tanhB =1+2 𝑒 2𝑥 −2+ 𝑒 −2𝑥 4 =1−1+ 𝑒 2𝑥 + 𝑒 −2𝑥 2 = cosh 2𝑥 =LHS QED 𝑏) cos 2𝑥 =2 𝑐𝑜𝑠ℎ 2 𝑥−1

7 WB C3 Given that sinh 𝑥 = 3 4 find the exact value of
𝑎) cosh 𝑥 𝑏) tanh 𝑥 𝑐) sinh 2𝑥 𝑑) cosℎ 2𝑥 𝑏) tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 𝑎) 𝑐𝑜𝑠ℎ 2 𝑥− 𝑠𝑖𝑛ℎ 2 𝑥≡1 𝑐𝑜𝑠ℎ 2 𝑥=1+ 𝑠𝑖𝑛ℎ 2 𝑥= = 25 16 = 3/4 5/4 = 3 5 cosh 𝑥 = 5 4 𝑐) sinh 2𝑥 ≡2 sinh 𝑥 cosh 𝑥 𝑑) cosh 2𝑥 ≡1+2 𝑠𝑖𝑛ℎ 2 𝑥 = = 17 8 =2× 3 4 × 5 4 = 15 8

8 3 𝑒 𝑥 −3 𝑒 −𝑥 − 𝑒 𝑥 − 𝑒 −𝑥 =7 collect and multiply through by 𝑒 𝑥
WB C4a Solving equations solve each equation for all real values of x, give answers as natural logarithms where appropriate 𝑎) 6 sinh 𝑥 −2 cosh 𝑥 =7 𝑏) 2 𝑐𝑜𝑠ℎ 2 𝑥−5 sinh 𝑥 =5 𝑐) cosh 2𝑥 −5 𝑐𝑜𝑠ℎ 𝑥 +4=0 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑎) 6 𝑒 𝑥 − 𝑒 −𝑥 2 −2 𝑒 𝑥 + 𝑒 −𝑥 2 =7 3 𝑒 𝑥 −3 𝑒 −𝑥 − 𝑒 𝑥 − 𝑒 −𝑥 =7 collect and multiply through by 𝑒 𝑥 2 𝑒 2𝑥 −7 𝑒 𝑥 −4=0 𝑒 𝑥 =− 1 2 , but 𝑒 𝑥 >0 𝑒 𝑥 −4 𝑒 𝑥 +1 =0 𝑥= ln 4

9 𝑥=𝑎𝑟𝑠𝑖𝑛ℎ − 1 2 = ln − 1 2 + − 1 2 2 +1 = ln − 1 2 + 5 2
WB C4 b Solving equations solve each equation for all real values of x, give answers as natural logarithms where appropriate 𝑏) 2 𝑐𝑜𝑠ℎ 2 𝑥−5 sinh 𝑥 =5 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑏) use the identity 𝑐𝑜𝑠ℎ 2 𝑥=1+ 𝑠𝑖𝑛ℎ 2 𝑥 𝑠𝑖𝑛ℎ 2 𝑥 −5 sinh 𝑥 =5 2 𝑠𝑖𝑛ℎ 2 𝑥−5 sinh 𝑥 −3=0 arsinℎ 𝑥 = ln 𝑥+ 𝑥 𝑥∈𝑅 arcosh 𝑥 = ln 𝑥+ 𝑥 2 −1 , 𝑥≥1 2 sinh 𝑥 +1 sinh 𝑥 −3 =0 sinh 𝑥 =− 1 2 , 3 𝑥=𝑎𝑟𝑠𝑖𝑛ℎ − 1 2 = ln − − = ln − Or 𝑥=𝑎𝑟𝑠𝑖𝑛ℎ (3)= ln = ln

10 2 𝑐𝑜𝑠ℎ 2 𝑥−1 −5 cosh 𝑥 +4=0 2 𝑐𝑜𝑠ℎ 2 𝑥−5 cosh 𝑥 +3=0
WB C4 c Solving equations solve each equation for all real values of x, give answers as natural logarithms where appropriate 𝑐) cosh 2𝑥 −5 𝑐𝑜𝑠ℎ 𝑥 +4=0 sinh 𝑥 ≡ 𝑒 𝑥 − 𝑒 −𝑥 2 cosh 𝑥 ≡ 𝑒 𝑥 + 𝑒 −𝑥 2 tanh 𝑥 ≡ sinh 𝑥 cosh 𝑥 ≡ 𝑒 2𝑥 −1 𝑒 2𝑥 +1 𝑐) use the identity cosh 2𝑥 =2 𝑐𝑜𝑠ℎ 2 𝑥−1 2 𝑐𝑜𝑠ℎ 2 𝑥−1 −5 cosh 𝑥 +4=0 2 𝑐𝑜𝑠ℎ 2 𝑥−5 cosh 𝑥 +3=0 arsinℎ 𝑥 = ln 𝑥+ 𝑥 𝑥∈𝑅 arcosh 𝑥 = ln 𝑥± 𝑥 2 −1 , 𝑥≥1 2 cosh 𝑥 −3 cosh 𝑥 −1 =0 cosh 𝑥 = 3 2 , 1 𝑥=𝑎𝑟𝑐𝑜𝑠ℎ = ln ± −1 = or 𝑡ℎ𝑖𝑛𝑘 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑝ℎ 𝑜𝑓 cosh 𝑥 Or 𝑥=𝑎𝑟𝑐𝑜𝑠ℎ (1)= ln −1 = ln 1 =0

11 One thing to improve is –
KUS objectives BAT use identities for the hyperbolic functions; solve equations using the definitions and identities for hyperbolic functions self-assess One thing learned is – One thing to improve is –

12 END


Download ppt "Hyperbolic functions."

Similar presentations


Ads by Google