Presentation is loading. Please wait.

Presentation is loading. Please wait.

Complex numbers Modulus argument.

Similar presentations


Presentation on theme: "Complex numbers Modulus argument."— Presentation transcript:

1 Complex numbers Modulus argument

2 Complex numbers Review
Using: Manipulation with complex numbers Also Modulus and argument Re Im =0.540 Complex roots w is a root of Find the values of a and b Equating real & imaginary parts Find the values of p and q Equating real parts: Equating imaginary parts:

3 Complex numbers: modulus argument form
KUS objectives BAT convert between the form a +bi and modulus argument form of a complex number Starter: see previous page

4 Modulus-argument form of a complex number
y (Imaginary) z The modulus-argument form is an alternative way of writing a complex number, and it includes the modulus of the number as well as its argument. Hyp Opp r rsinθ θ x (Real) rcosθ Adj The modulus-argument form looks like this: 𝑧=𝑟(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃) r is the modulus of the number θ is the argument of the number By GCSE Trigonometry: O 𝑂𝑝𝑝=𝐻𝑦𝑝×𝑆𝑖𝑛𝜃 =𝑟𝑠𝑖𝑛𝜃 S H 𝑧=𝑟𝑐𝑜𝑠𝜃+𝑖𝑟𝑠𝑖𝑛𝜃 A 𝐴𝑑𝑗=𝐻𝑦𝑝×𝐶𝑜𝑠𝜃 =𝑟𝑐𝑜𝑠𝜃 C H 𝑧=𝑟(𝑐𝑜𝑠𝜃+𝑖𝑠𝑖𝑛𝜃) So 𝑧=𝑥+𝑦𝑖 then 𝑥=𝑟𝑐𝑜𝑠𝜃 and 𝑦=𝑟𝑠𝑖𝑛𝜃

5 WB14 express in modulus argument form
a) 𝑖 b) 4−2𝑖 c) −7−3𝑖 x (Real) y (Imaginary) 𝑟= =13 𝜃= arctan = 67.4 𝑐 Solution 𝒛=𝟏𝟑 𝒄𝒐𝒔 𝟔𝟕.𝟒+𝒊𝒔𝒊𝒏 𝟔𝟕.𝟒 𝑟= =2 5 𝜃= arctan =− 𝜋 6 𝑟= (−7) 2 + (−3) 2 = 58 Solution 𝒛=2 5 𝒄𝒐𝒔 − 𝜋 6 +𝒊𝒔𝒊𝒏 − 𝜋 6 𝜃= arctan −𝜋=−2.74 Solution 𝒛= 58 𝒄𝒐𝒔 −2.74 +𝒊𝒔𝒊𝒏 −2.74

6 𝑥=4 cos 𝜋 6 =2 3 𝑧=𝑥+𝑦𝑖 𝑥=𝑟𝑐𝑜𝑠𝜃 and 𝑦=𝑟𝑠𝑖𝑛𝜃 𝑦=4 sin 𝜋 6 =2
WB15 express the following in the form 𝑥+𝑦𝑖 𝑎) 𝑧=4 𝑐𝑜𝑠 𝜋 6 +𝑖𝑠𝑖𝑛 𝜋 b) 𝑤= 2 cos − 3𝜋 4 +𝑖 sin − 3𝜋 4 𝑥=4 cos 𝜋 6 =2 3 𝑧=𝑥+𝑦𝑖 𝑥=𝑟𝑐𝑜𝑠𝜃 and 𝑦=𝑟𝑠𝑖𝑛𝜃 𝑦=4 sin 𝜋 6 =2 x (Real) y (Imaginary) z 4 x y π 6 Solution 𝒛=𝟐 𝟑 +𝟐𝒊 𝑥= 2 cos − 3𝜋 4 =−1 w 𝑦= 2 sin − 3𝜋 4 =−1 Solution 𝒘=−𝟏−𝒊

7 Remember the angle you actually want!
WB16 Express the numbers following numbers in the modulus argument form: 𝑧 1 =1+𝑖 𝑧 2 =−3−3𝑖 Write down the value of |z1z2| y (Imaginary) Modulus for z1 Argument for z1 𝑇𝑎 𝑛 − = 𝜋 3 =2 z1 𝑧 1 =2 𝑐𝑜𝑠 𝜋 3 +𝑖𝑠𝑖𝑛 𝜋 3 √3 3 θ x (Real) θ 1 Modulus for z2 Argument for z2 3 𝑇𝑎 𝑛 − Remember the angle you actually want! z2 = 18 = 𝜋 4 =− 3𝜋 4 =3 2 𝑧 2 =3 2 𝑐𝑜𝑠 − 3𝜋 4 +𝑖𝑠𝑖𝑛 − 3𝜋 4 𝑧 1 𝑧 2 = 𝑧 1 ||𝑧 2 =2×3 2 =6 2

8 cos −𝜃 = cos 𝜃 sin −𝜃 = −sin 𝜃 𝑇𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ℎ𝑎𝑣𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦
WB17 Express these complex numbers following numbers in correct modulus argument form: a) 𝑧 1 =2 cos 𝜋 12 −𝑖 sin b) 𝑧 2 =5 cos 𝜋 2 −𝑖 sin − 𝜋 2 𝑇𝑟𝑖𝑔𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ℎ𝑎𝑣𝑒 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 cos −𝜃 = cos 𝜃 sin −𝜃 = −sin 𝜃 𝑎) cos 𝜋 12 −𝑖 sin 𝜋 12 = 2 cos − 𝜋 𝑖 sin − 𝜋 12 𝑏) cos 𝜋 2 −𝑖 sin − 𝜋 2 = 5 cos 𝜋 2 +𝑖 sin 𝜋 2

9 The modulus & argument of a product
It can be shown that: It can also be shown that: 𝑧 1 𝑧 2 = 𝑧 𝑧 2 𝑎𝑟𝑔 𝑧 1 𝑧 2 = arg 𝑧 arg 𝑧 2 The modulus & argument of a quotient It can be shown that: It can also be shown that: 𝑎𝑟𝑔 𝑧 1 𝑧 2 = arg 𝑧 1 − arg 𝑧 2 𝑧 1 𝑧 2 = 𝑧 𝑧 1 :Challenge – try constructing a proof of either result using modulus argument form of complex numbers

10 b) arg (z1z2 )= arg 𝑧 1 + arg 𝑧 2 = 5𝜋 12 + 𝜋 12 = 𝜋 2
WB18 𝑧 1 =3 cos 5𝜋 12 +𝑖 sin 5𝜋 𝑧 2 =4 cos 𝜋 12 +𝑖 sin 𝜋 12 Write down the value of a) |𝑧1𝑧2| b) arg (z1z2 ) Hence write z1z2 in c) modulus argument form d) the form x + yi 𝑎) 𝑧1𝑧2 = 𝑧 1 𝑧 2 =3×4=12 b) arg (z1z2 )= arg 𝑧 1 + arg 𝑧 2 = 5𝜋 12 + 𝜋 12 = 𝜋 2 𝑐) 𝑧 1 𝑧 2 = cos 𝜋 2 +𝑖 sin 𝜋 2 𝑑) 𝑧 1 𝑧 2 = 𝑥+𝑦𝑖=12 cos 𝜋 i sin 𝜋 =12𝑖

11 𝑓𝑖𝑟𝑠𝑡 𝑤𝑟𝑖𝑡𝑒 𝑧 2 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚
WB 𝑧 1 =2 cos 𝜋 15 +𝑖 sin 𝜋 𝑧 2 =3 cos 2𝜋 5 −𝑖 sin 2𝜋 5 a) Express 𝑧 1 𝑧 2 in the form x + yi b) Express 𝑧 1 𝑧 2 in the form x + yi 𝑓𝑖𝑟𝑠𝑡 𝑤𝑟𝑖𝑡𝑒 𝑧 2 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚 3 cos 2𝜋 5 −𝑖 sin 2𝜋 5 =3 cos − 2𝜋 5 +𝑖 sin − 2𝜋 5 𝑧1𝑧2 = 𝑧 1 𝑧 2 =2×3=6 arg (z1z2 )= arg 𝑧 1 + arg 𝑧 2 = 𝜋 15 + − 2𝜋 5 =− 𝜋 3 𝑧 1 𝑧 2 = 6 cos − 𝜋 3 +𝑖 sin − 𝜋 3 𝑧 1 𝑧 2 = 𝑥+𝑦𝑖=6 cos − 𝜋 i sin − 𝜋 =3−3 3 𝑖

12 arg 𝑧 1 𝑧 2 = arg 𝑧 1 − arg 𝑧 2 = 𝜋 15 − − 2𝜋 5 = 7𝜋 15
WB19 (cont) 𝑧 1 =2 cos 𝜋 15 +𝑖 sin 𝜋 𝑧 2 =3 cos 2𝜋 5 −𝑖 sin 2𝜋 5 a) Express 𝑧 1 𝑧 2 in the form x + yi b) Express 𝑧 1 𝑧 2 in the form x + yi 𝑧 2 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚 𝑧 2 = 3 cos − 2𝜋 5 +𝑖 sin − 2𝜋 5 𝑧 1 𝑧 2 = 𝑧 𝑧 2 = 2 3 arg 𝑧 1 𝑧 2 = arg 𝑧 1 − arg 𝑧 2 = 𝜋 15 − − 2𝜋 5 = 7𝜋 15 𝑧 1 𝑧 2 = cos 7𝜋 15 +𝑖 sin 7𝜋 15 𝑧 1 𝑧 2 = 𝑥+𝑦𝑖= cos 7𝜋 i sin 7𝜋 = 𝑖

13 𝑓𝑖𝑟𝑠𝑡 𝑤𝑟𝑖𝑡𝑒 𝑧 1 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚
WB 𝑧 1 =8 cos 𝜋 3 −𝑖 sin 𝜋 𝑧 2 =2 cos 7𝜋 12 +𝑖 sin 7𝜋 12 a) Express 𝑧 1 𝑧 2 in the form x + yi b) Express 𝑧 1 𝑧 2 in the form x + yi 𝑓𝑖𝑟𝑠𝑡 𝑤𝑟𝑖𝑡𝑒 𝑧 1 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚 8 cos 𝜋 3 −𝑖 sin 𝜋 3 =8 cos − 𝜋 3 +𝑖 sin − 𝜋 3 𝑧1𝑧2 = 𝑧 1 𝑧 2 =8×2=16 arg (z1z2 )= arg 𝑧 1 + arg 𝑧 2 =− 𝜋 3 + 7𝜋 12 = 𝜋 4 𝑧 1 𝑧 2 = cos 𝜋 4 +𝑖 sin 𝜋 4 𝑧 1 𝑧 2 = 𝑥+𝑦𝑖= 𝑖

14 arg 𝑧 1 𝑧 2 = arg 𝑧 1 − arg 𝑧 2 =− 𝜋 3 − 7𝜋 12 =− 11𝜋 12
WB20(cont) 𝑧 1 =8 cos 𝜋 3 +𝑖 sin 𝜋 𝑧 2 =2 cos 7𝜋 12 −𝑖 sin 7𝜋 12 a) Express 𝑧 1 𝑧 2 in the form x + yi b) Express 𝑧 1 𝑧 2 in the form x + yi 𝑧 1 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑓𝑜𝑟𝑚 𝑧 1 =8 cos − 𝜋 3 +𝑖 sin − 𝜋 3 𝑧 1 𝑧 2 = 𝑧 𝑧 2 = 4 arg 𝑧 1 𝑧 2 = arg 𝑧 1 − arg 𝑧 2 =− 𝜋 3 − 7𝜋 12 =− 11𝜋 12 𝑧 1 𝑧 2 =4 cos − 11𝜋 12 +𝑖 sin − 11𝜋 12 𝑧 1 𝑧 2 = 𝑥+𝑦𝑖 = − 6 − 2 +(− )𝑖

15 Im Re WB 21 a) z = – 24 – 7i Show z on an Argand diagram
b) Calculate arg z, giving your answer in radians to 2 decimal places c) find the value of 𝑧𝑤 It is given that w = a + bi, a  ℝ, b  ℝ. Given also that 𝑤 =4 and arg 𝑤 = 5𝜋 6 c) find the values of a and b d) find the value of 𝑧𝑤 Im Re where and Modulus-argument form given

16 known as the modulus-argument form of a complex number
Summary Modulus-argument form of a complex number Re Im If and then known as the modulus-argument form of a complex number

17 KUS objectives BAT convert between the form a +bi and modulus argument form of a complex number self-assess One thing learned is – One thing to improve is –

18 END

19 Writing complex no in modulus argument form
Real axis Imaginary axis x A complex number has both modulus and argument Then In modulus argument form


Download ppt "Complex numbers Modulus argument."

Similar presentations


Ads by Google