Presentation is loading. Please wait.

Presentation is loading. Please wait.

Numerical Differentiation

Similar presentations


Presentation on theme: "Numerical Differentiation"โ€” Presentation transcript:

1 Numerical Differentiation
Sec:4.1 Numerical Differentiation

2 Forward-difference Formula Backward-difference Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Forward-difference Formula Backward-difference Formula ๐‘“ โ€ฒ ๐’™ ๐ŸŽ = ๐‘“ ๐’™ ๐ŸŽ +๐’‰ โˆ’๐‘“( ๐’™ ๐ŸŽ ) โ„Ž โˆ’ โ„Ž 2 ๐‘“โ€ฒโ€ฒ(๐œ‰) ๐‘“ โ€ฒ ๐’™ ๐ŸŽ = ๐‘“ ๐’™ ๐ŸŽ โˆ’๐‘“( ๐’™ ๐ŸŽ โˆ’๐’‰) โ„Ž + โ„Ž 2 ๐‘“โ€ฒโ€ฒ(๐œ‰) where ๐œ‰ between ๐’™ ๐ŸŽ and ๐’™ ๐ŸŽ +๐ก where ๐œ‰ between ๐’™ ๐ŸŽ and ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ Two-Point Formula Example Use table 4.2 and forward-difference formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž=0.1 ๐’‰=๐ŸŽ.๐Ÿ 1 (0.1) ๐‘“ 2.1 โˆ’๐‘“(2) ๐‘“โ€ฒ(2)โ‰ˆ Use table 4.2 and backward-difference formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž= 0.2 1 (0.2) ๐‘“ 2 โˆ’๐‘“(1.8) ๐‘“โ€ฒ(2)โ‰ˆ ๐’‰=๐ŸŽ.๐Ÿ

3 Sec:4.1 Numerical Differentiation
๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก Five-Point Midpoint Formula Five-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ โˆ’๐Ÿ๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ‘๐ก ๐’™ ๐ŸŽ +๐Ÿ’๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก

4 Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก Example Use table 4.2 and three-point endpoint formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž=0.1 ๐‘“โ€ฒ(2)โ‰ˆ = =

5 Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐’™ ๐ŸŽ โˆ’๐Ÿ๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐Ÿ‘๐ก ๐’™ ๐ŸŽ +๐Ÿ’๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž=0.1 ๐‘“โ€ฒ(2)โ‰ˆ The only five-point formula for which the table gives sufficient data is the midpoint formula =

6 Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐’™ ๐ŸŽ โˆ’๐Ÿ๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐Ÿ‘๐ก ๐’™ ๐ŸŽ +๐Ÿ’๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž=0.1 ๐‘“โ€ฒ(2)โ‰ˆ = Compute the actual error The data given in Table 4.2 are taken from the function ๐‘“ ๐‘ฅ = ๐‘ฅ๐‘’ ๐‘ฅ The actual error = โˆ’๐‘“โ€ฒ(1.8) = โˆ’

7 Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐’™ ๐ŸŽ โˆ’๐Ÿ๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ +๐Ÿ‘๐ก ๐’™ ๐ŸŽ +๐Ÿ’๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐‘“ โ€ฒ 2 with โ„Ž=0.1 ๐‘“โ€ฒ(2)โ‰ˆ = Compute the actual error The data given in Table 4.2 are taken from the function ๐‘“ ๐‘ฅ = ๐‘ฅ๐‘’ ๐‘ฅ The actual error = โˆ’๐‘“โ€ฒ(1.8) = โˆ’

8 Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก Example Use table 4.2 and three-point midpoint formula to approximate ๐‘“ โ€ฒ 2 (consider all possible cases) ๐’‰=๐ŸŽ.๐Ÿ 1 2(0.1) ๐‘“ 2.1 โˆ’๐‘“(1.9) ๐‘“โ€ฒ(2)โ‰ˆ 1 2(0.2) ๐‘“ 2.2 โˆ’๐‘“(1.8) ๐‘“โ€ฒ(2)โ‰ˆ ๐’‰=๐ŸŽ.๐Ÿ

9 Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก Example Use table 4.2 and three-point endpoint formula to approximate ๐‘“ โ€ฒ (consider all possible cases) ๐’‰=โˆ’๐ŸŽ.๐Ÿ 1 2(โˆ’0.1) โˆ’3๐‘“ ๐‘“ 2.1 โˆ’๐‘“(2) ๐‘“โ€ฒ(2.2)โ‰ˆ ๐’‰=โˆ’๐ŸŽ.๐Ÿ 1 2(โˆ’0.2) โˆ’3๐‘“ ๐‘“ 2 โˆ’๐‘“(1.8) ๐‘“โ€ฒ(2.2)โ‰ˆ

10 Sec:4.1 Numerical Differentiation
๐’‡ โ€ฒ ๐’™ ๐ŸŽ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก Five-Point Midpoint Formula Five-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐Ÿ๐ก ๐’™ ๐ŸŽ โˆ’๐Ÿ๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ‘๐ก ๐’™ ๐ŸŽ +๐Ÿ’๐ก ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก

11 Sec:4.1 Numerical Differentiation
Comparison Study Example ๐‘“โ€ฒ(2.0)โ‰ˆ True Error The true value Three-point endpoint with h = 0.1 1.35 ร— eโˆ’1 Three-point endpoint with h = โˆ’0.1 1.13 eโˆ’1 Three-point midpoint with h = 0.1 โˆ’6.16 e-2 Three-point midpoint with h = 0.2 โˆ’2.47 e-1 Five-point midpoint with h = 0.1 1.69 e-4 Table 4.2 represents values of ๐‘“ ๐‘ฅ =๐‘ฅ ๐‘’ ๐‘ฅ If we had no other information we would accept the five-point midpoint approximation using h = 0.1 as the most accurate, and expect the true value to be between that approximation and the three-point mid-point approximation that is in the interval [22.166, ].

12 Second Derivative Midpoint Formula
Sec:4.1 Numerical Differentiation ๐’‡ โ€ฒ โ€ฒ ๐’™ ๐ŸŽ Approximation Second Derivative Midpoint Formula ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก Example Use table 4.2 and Second Derivative Midpoint Formula to approximate ๐‘“ โ€ฒ โ€ฒ 2 with โ„Ž=0.1,0.2 ๐‘“โ€ฒโ€ฒ(2)โ‰ˆ ๐‘“โ€ฒโ€ฒ(2)โ‰ˆ = = = = ย ๐‘“โ€ฒโ€ฒ(2.0)โ‰ˆ True Error The true value midpoint with h = 0.1 โˆ’3.70 e-2 midpoint with h = 0.2 โˆ’1.48 e-1

13 Sec:4.1 Numerical Differentiation
๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’๐’๐’” ๐ฟ๐‘Ž๐‘”๐‘Ÿ๐‘Ž๐‘›๐‘”๐‘’ ๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ ๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’๐’๐’” ๐‘ป๐’‰๐’†๐’”๐’† ๐’‡๐’๐’“๐’Ž๐’–๐’๐’‚๐’” ๐‘‡๐‘Ž๐‘ฆ๐‘™๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  Product of two functions ๐‘ซ ๐’™ ๐’‡๐’ˆ = ๐’‡ โ€ฒ ๐’ˆ+๐’‡๐’ˆโ€ฒ ๐‘ซ ๐’™ ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ = ๐’™โˆ’ ๐’™ ๐Ÿ + ๐’™โˆ’ ๐’™ ๐Ÿ Product of three functions ๐‘ซ ๐’™ ๐’‡๐’ˆ๐’Œ = ๐’‡ โ€ฒ ๐’ˆ๐’Œ+๐’‡ ๐’ˆ โ€ฒ ๐’Œ+๐’‡๐’ˆ๐’Œโ€ฒ ๐‘ซ ๐’™ ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ‘ = ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ‘ + ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ‘ + ๐’™โˆ’ ๐’™ ๐Ÿ ๐’™โˆ’ ๐’™ ๐Ÿ

14 Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’๐’๐’” Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก the second Lagrange polynomial ๐‘“ ๐‘ฅ =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ โ„Ž โ„Ž + ๐’‡โ€ฒโ€ฒโ€ฒ(๐ƒ(๐’™)) ๐Ÿ‘! (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰) Differentiate both sides ๐‘“โ€ฒ ๐‘ฅ =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 + ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 +โ„Ž + ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 +โ„Ž + ๐‘ฅโˆ’ ๐‘ฅ โ„Ž โ„Ž + ๐’‡โ€ฒโ€ฒโ€ฒ(๐ƒ(๐’™)) ๐Ÿ‘! ๐‘ซ (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰) +๐‘ซ ๐’‡โ€ฒโ€ฒโ€ฒ(๐ƒ(๐’™)) ๐Ÿ‘! (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰) ๐‘ซ (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰) = (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)+ (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)+ (๐’™โˆ’ ๐’™ ๐ŸŽ +๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ ) Set ๐‘ฅ= ๐‘ฅ 0 ๐‘“โ€ฒ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž โˆ’โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 โ„Ž + โˆ’โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž โ„Ž 2โ„Ž โ„Ž + ๐’‡ โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’™ ๐Ÿ‘! (โˆ’ ๐’‰ ๐Ÿ )

15 Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ โˆ’๐ก ๐’™ ๐ŸŽ ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐ก ๐’™ ๐ŸŽ +๐Ÿ๐ก the second Lagrange polynomial ๐‘“ ๐‘ฅ =๐‘“ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’2โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’2โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +2โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž 2โ„Ž โ„Ž + ๐’‡ โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’™ ๐Ÿ‘! (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) Differentiate both sides ๐‘“โ€ฒ ๐‘ฅ =๐‘“ ๐‘ฅ 0 ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž + ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’2โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 + ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’2โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +2โ„Ž ๐‘ฅโˆ’ ๐‘ฅ 0 + ๐‘ฅโˆ’ ๐‘ฅ 0 โˆ’โ„Ž 2โ„Ž โ„Ž +๐ท (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) ๐’‡ โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’™ ๐Ÿ‘! +๐ท ๐’‡ โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’™ ๐Ÿ‘! (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) ๐ท (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) = (๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) + (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) + (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰) Set ๐‘ฅ= ๐‘ฅ 0 ๐‘“โ€ฒ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž + โˆ’2โ„Ž โˆ’โ„Ž โˆ’2โ„Ž +๐‘“ ๐‘ฅ 0 +โ„Ž โˆ’2โ„Ž โ„Ž โˆ’โ„Ž +๐‘“ ๐‘ฅ 0 +2โ„Ž โˆ’โ„Ž 2โ„Ž โ„Ž +๐ท (๐’™โˆ’ ๐’™ ๐ŸŽ )(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐’‰)(๐’™โˆ’ ๐’™ ๐ŸŽ โˆ’๐Ÿ๐’‰) ๐’‡ โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’™ ๐Ÿ‘!

16 Sec:4.1 Numerical Differentiation
๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’๐’๐’” ๐ฟ๐‘Ž๐‘”๐‘Ÿ๐‘Ž๐‘›๐‘”๐‘’ ๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™ ๐‘ซ๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’๐’๐’” ๐‘ป๐’‰๐’†๐’”๐’† ๐’‡๐’๐’“๐’Ž๐’–๐’๐’‚๐’” ๐‘‡๐‘Ž๐‘ฆ๐‘™๐‘œ๐‘Ÿ ๐‘ ๐‘’๐‘Ÿ๐‘–๐‘’๐‘  Use Lagrange polynomial and the given nodes to express ๐‘“(๐‘ฅ) as ๐‘ƒ(๐‘ฅ)+๐‘’๐‘Ÿ๐‘Ÿ๐‘œ๐‘Ÿ then differentiate both sides. Next set ๐‘ฅ = ๐‘ฅ 0

17 Sec:4.1 Numerical Differentiation
๐‘ป๐’‚๐’š๐’๐’๐’“ ๐’”๐’†๐’“๐’Š๐’†๐’” ๐‘“ ๐‘ฅ 0 +๐‘˜ =๐‘“ ๐‘ฅ 0 +๐‘˜๐‘“โ€ฒ ๐‘ฅ ๐‘˜ 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ ๐‘˜ 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ ๐‘˜ 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐’”๐’†๐’• ๐’Œ=๐’‰ ๐‘“ ๐‘ฅ 0 +โ„Ž =๐‘“ ๐‘ฅ 0 +โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐’”๐’†๐’• ๐’Œ=๐Ÿ๐’‰ ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐’”๐’†๐’• ๐’Œ=โˆ’๐’‰ ๐‘“ ๐‘ฅ 0 โˆ’โ„Ž =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ 0 โˆ’ 1 6 โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐’”๐’†๐’• ๐’Œ=โˆ’๐Ÿ๐’‰ ๐‘“ ๐‘ฅ 0 โˆ’2โ„Ž =๐‘“ ๐‘ฅ 0 โˆ’2โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ 0 โˆ’ 4 3 โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ

18 Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโ€™(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). Then find the error term [what is the order of the error O( โ„Ž ๐‘š ) ] ๐’‡ โ€ฒ ๐’™ ๐ŸŽ =๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ +๐‘ฌ๐’“๐’“๐’๐’“ ๐‘จ ๐‘“ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 ๐‘ฉ ๐‘“ ๐‘ฅ 0 +โ„Ž =๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ช ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ + โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒโ€ฒ ๐‘ฅ 0 ๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ ๐ด+๐ต+๐ถ ๐‘“ ๐‘ฅ 0 +โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒ ๐‘ฅ 0 = + ( 1 6 ๐ต๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ ๐ถ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 )โ„Ž 3 We have 3 constants to determine (A, B, C). So we need three equations ๐ด+๐ต+๐ถ =0 ๐‘จ= โˆ’๐Ÿ‘ ๐Ÿ๐’‰ ๐‘ฉ= ๐Ÿ ๐’‰ ๐‘ช= โˆ’๐Ÿ ๐Ÿ๐’‰ โ„Ž ๐ต+2๐ถ =0 โ„Ž ๐ต+2๐ถ =1 ๐’‡ โ€ฒ ๐’™ ๐ŸŽ โ‰ˆโˆ’ ๐Ÿ‘ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ + ๐Ÿ ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐’‰ โˆ’ ๐Ÿ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰

19 Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโ€™(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). Then find the error term [what is the order of the error O( โ„Ž ๐‘š ) ] ๐’‡ โ€ฒ ๐’™ ๐ŸŽ =๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ +๐‘ฌ๐’“๐’“๐’๐’“ ๐‘จ ๐‘“ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 ๐‘ฉ ๐‘“ ๐‘ฅ 0 +โ„Ž =๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ช ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ + โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒโ€ฒ ๐‘ฅ 0 ๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ ๐ด+๐ต+๐ถ ๐‘“ ๐‘ฅ 0 +โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒ ๐‘ฅ 0 = + ( 1 6 ๐ต๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ ๐ถ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 )โ„Ž 3 find the error term ๐’‡ โ€ฒ ๐’™ ๐ŸŽ โ‰ˆโˆ’ ๐Ÿ‘ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ + ๐Ÿ ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐’‰ โˆ’ ๐Ÿ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ ๐‘จ= โˆ’๐Ÿ‘ ๐Ÿ๐’‰ ๐‘ฉ= ๐Ÿ ๐’‰ ๐‘ช= โˆ’๐Ÿ ๐Ÿ๐’‰ Leading error term =( 1 6 ๐ต๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ ๐ถ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 )โ„Ž 3 = ( ๐Ÿ ๐Ÿ‘๐’‰ ๐’‡ โ€ฒโ€ฒโ€ฒ ๐’™ ๐ŸŽ โˆ’ ๐Ÿ ๐Ÿ‘๐’‰ ๐’‡โ€ฒโ€ฒโ€ฒ ๐’™ ๐ŸŽ )๐’‰ ๐Ÿ‘ = โˆ’ ๐Ÿ ๐Ÿ‘ ๐’‡โ€ฒโ€ฒโ€ฒ ๐’™ ๐ŸŽ ๐’‰ ๐Ÿ ๐‘ฌ๐’“๐’“๐’๐’“=๐‘ถ( ๐’‰ ๐Ÿ ) ๐’‡ โ€ฒ ๐’™ ๐ŸŽ =โˆ’ ๐Ÿ‘ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ + ๐Ÿ ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐’‰ โˆ’ ๐Ÿ ๐Ÿ๐’‰ ๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ โˆ’ ๐Ÿ ๐Ÿ‘ ๐’‡โ€ฒโ€ฒโ€ฒ ๐ƒ ๐’‰ ๐Ÿ

20 Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโ€™โ€™(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). ๐’‡ โ€ฒโ€ฒ ๐’™ ๐ŸŽ =๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ +๐‘ฌ๐’“๐’“๐’๐’“ ๐‘จ ๐‘“ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 ๐‘ฉ ๐‘“ ๐‘ฅ 0 +โ„Ž =๐‘“ ๐‘ฅ 0 +โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ช ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž ๐‘“ โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“ โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“ โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ + โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒโ€ฒ ๐‘ฅ 0 ๐‘จ ๐’‡ ๐’™ ๐ŸŽ +๐‘ฉ๐’‡ ๐’™ ๐ŸŽ +๐’‰ +๐‘ช๐’‡ ๐’™ ๐ŸŽ +๐Ÿ๐’‰ ๐ด+๐ต+๐ถ ๐‘“ ๐‘ฅ 0 +โ„Ž ๐ต+2๐ถ ๐‘“ โ€ฒ ๐‘ฅ 0 = + ( 1 6 ๐ต๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ ๐ถ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 )โ„Ž 3 We have 3 constants to determine (A, B, C). So we need three equations ๐ด+๐ต+๐ถ =0 โ„Ž ๐ต+2๐ถ =๐Ÿ โ„Ž ๐ต+2๐ถ =๐ŸŽ

21 Sec:4.1 Numerical Differentiation
๐‘“ โ€ฒ ๐‘ฅ 0 =๐‘จ๐‘“ ๐‘ฅ 0 โˆ’โ„Ž +๐‘ฉ ๐‘“ ๐‘ฅ 0 +๐‘ช๐‘“ ๐‘ฅ 0 +โ„Ž +๐‘ซ๐‘“ ๐‘ฅ 0 +2โ„Ž +๐‘ฌ๐‘“ ๐‘ฅ 0 +3โ„Ž +๐‘ฌ๐’“๐’“๐’๐’“ ๐‘จ ๐‘“ ๐‘ฅ 0 โˆ’โ„Ž =๐‘“ ๐‘ฅ 0 โˆ’โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ 0 โˆ’ 1 6 โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ฉ ๐‘“ ๐‘ฅ 0 =๐‘“ ๐‘ฅ 0 ๐‘ช ๐‘“ ๐‘ฅ 0 +โ„Ž =๐‘“ ๐‘ฅ 0 +โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ซ ๐‘ฌ ๐‘“ ๐‘ฅ 0 +2โ„Ž =๐‘“ ๐‘ฅ 0 +2โ„Ž๐‘“โ€ฒ ๐‘ฅ โ„Ž 2 ๐‘“โ€ฒโ€ฒ ๐‘ฅ โ„Ž 3 ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ โ„Ž 4 ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ ๐‘ณ๐‘ฏ๐‘บ= ๐ด+๐ต+๐ถ+๐ท+๐ธ ๐‘“ ๐‘ฅ 0 +โ‹ฏ๐‘“โ€ฒ ๐‘ฅ 0 +โ‹ฏ๐‘“โ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ๐‘“โ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ๐‘“โ€ฒโ€ฒโ€ฒโ€ฒ ๐‘ฅ 0 +โ‹ฏ

22 Sec:4.1 Numerical Differentiation


Download ppt "Numerical Differentiation"

Similar presentations


Ads by Google