Download presentation
Presentation is loading. Please wait.
1
Numerical Differentiation
Sec:4.1 Numerical Differentiation
2
Forward-difference Formula Backward-difference Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Forward-difference Formula Backward-difference Formula ๐ โฒ ๐ ๐ = ๐ ๐ ๐ +๐ โ๐( ๐ ๐ ) โ โ โ 2 ๐โฒโฒ(๐) ๐ โฒ ๐ ๐ = ๐ ๐ ๐ โ๐( ๐ ๐ โ๐) โ + โ 2 ๐โฒโฒ(๐) where ๐ between ๐ ๐ and ๐ ๐ +๐ก where ๐ between ๐ ๐ and ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ โ๐ก ๐ ๐ Two-Point Formula Example Use table 4.2 and forward-difference formula to approximate ๐ โฒ 2 with โ=0.1 ๐=๐.๐ 1 (0.1) ๐ 2.1 โ๐(2) ๐โฒ(2)โ Use table 4.2 and backward-difference formula to approximate ๐ โฒ 2 with โ= 0.2 1 (0.2) ๐ 2 โ๐(1.8) ๐โฒ(2)โ ๐=๐.๐
3
Sec:4.1 Numerical Differentiation
๐ โฒ ๐ ๐ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก Five-Point Midpoint Formula Five-Point Endpoint Formula ๐ ๐ ๐ ๐ +๐๐ก ๐ ๐ โ๐๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐๐ก
4
Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and three-point endpoint formula to approximate ๐ โฒ 2 with โ=0.1 ๐โฒ(2)โ = =
5
Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐ ๐ โ๐๐ก ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐ โฒ 2 with โ=0.1 ๐โฒ(2)โ The only five-point formula for which the table gives sufficient data is the midpoint formula =
6
Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐ ๐ โ๐๐ก ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐ โฒ 2 with โ=0.1 ๐โฒ(2)โ = Compute the actual error The data given in Table 4.2 are taken from the function ๐ ๐ฅ = ๐ฅ๐ ๐ฅ The actual error = โ๐โฒ(1.8) = โ
7
Five-Point Midpoint Formula Five-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Five-Point Midpoint Formula Five-Point Endpoint Formula ๐ ๐ โ๐๐ก ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and five-point midpoint formula to approximate ๐ โฒ 2 with โ=0.1 ๐โฒ(2)โ = Compute the actual error The data given in Table 4.2 are taken from the function ๐ ๐ฅ = ๐ฅ๐ ๐ฅ The actual error = โ๐โฒ(1.8) = โ
8
Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and three-point midpoint formula to approximate ๐ โฒ 2 (consider all possible cases) ๐=๐.๐ 1 2(0.1) ๐ 2.1 โ๐(1.9) ๐โฒ(2)โ 1 2(0.2) ๐ 2.2 โ๐(1.8) ๐โฒ(2)โ ๐=๐.๐
9
Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ ๐ ๐ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก Example Use table 4.2 and three-point endpoint formula to approximate ๐ โฒ (consider all possible cases) ๐=โ๐.๐ 1 2(โ0.1) โ3๐ ๐ 2.1 โ๐(2) ๐โฒ(2.2)โ ๐=โ๐.๐ 1 2(โ0.2) โ3๐ ๐ 2 โ๐(1.8) ๐โฒ(2.2)โ
10
Sec:4.1 Numerical Differentiation
๐ โฒ ๐ ๐ Approximation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก Five-Point Midpoint Formula Five-Point Endpoint Formula ๐ ๐ ๐ ๐ +๐๐ก ๐ ๐ โ๐๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก ๐ ๐ +๐๐ก ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐๐ก
11
Sec:4.1 Numerical Differentiation
Comparison Study Example ๐โฒ(2.0)โ True Error The true value Three-point endpoint with h = 0.1 1.35 ร eโ1 Three-point endpoint with h = โ0.1 1.13 eโ1 Three-point midpoint with h = 0.1 โ6.16 e-2 Three-point midpoint with h = 0.2 โ2.47 e-1 Five-point midpoint with h = 0.1 1.69 e-4 Table 4.2 represents values of ๐ ๐ฅ =๐ฅ ๐ ๐ฅ If we had no other information we would accept the five-point midpoint approximation using h = 0.1 as the most accurate, and expect the true value to be between that approximation and the three-point mid-point approximation that is in the interval [22.166, ].
12
Second Derivative Midpoint Formula
Sec:4.1 Numerical Differentiation ๐ โฒ โฒ ๐ ๐ Approximation Second Derivative Midpoint Formula ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก Example Use table 4.2 and Second Derivative Midpoint Formula to approximate ๐ โฒ โฒ 2 with โ=0.1,0.2 ๐โฒโฒ(2)โ ๐โฒโฒ(2)โ = = = = ย ๐โฒโฒ(2.0)โ True Error The true value midpoint with h = 0.1 โ3.70 e-2 midpoint with h = 0.2 โ1.48 e-1
13
Sec:4.1 Numerical Differentiation
๐ซ๐๐๐๐๐๐๐๐๐๐ ๐ฟ๐๐๐๐๐๐๐ ๐ผ๐๐ก๐๐๐๐๐๐๐ก๐๐๐ ๐๐๐๐ฆ๐๐๐๐๐๐ ๐ซ๐๐๐๐๐๐๐๐๐๐ ๐ป๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐ฆ๐๐๐ ๐ ๐๐๐๐๐ Product of two functions ๐ซ ๐ ๐๐ = ๐ โฒ ๐+๐๐โฒ ๐ซ ๐ ๐โ ๐ ๐ ๐โ ๐ ๐ = ๐โ ๐ ๐ + ๐โ ๐ ๐ Product of three functions ๐ซ ๐ ๐๐๐ = ๐ โฒ ๐๐+๐ ๐ โฒ ๐+๐๐๐โฒ ๐ซ ๐ ๐โ ๐ ๐ ๐โ ๐ ๐ ๐โ ๐ ๐ = ๐โ ๐ ๐ ๐โ ๐ ๐ + ๐โ ๐ ๐ ๐โ ๐ ๐ + ๐โ ๐ ๐ ๐โ ๐ ๐
14
Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation ๐ซ๐๐๐๐๐๐๐๐๐๐ Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก the second Lagrange polynomial ๐ ๐ฅ =๐ ๐ฅ 0 โโ ๐ฅโ ๐ฅ 0 ๐ฅโ ๐ฅ 0 โโ โโ โ2โ +๐ ๐ฅ 0 ๐ฅโ ๐ฅ 0 +โ ๐ฅโ ๐ฅ 0 โโ โ โโ +๐ ๐ฅ 0 +โ ๐ฅโ ๐ฅ 0 +โ ๐ฅโ ๐ฅ โ โ + ๐โฒโฒโฒ(๐(๐)) ๐! (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐) Differentiate both sides ๐โฒ ๐ฅ =๐ ๐ฅ 0 โโ ๐ฅโ ๐ฅ 0 + ๐ฅโ ๐ฅ 0 โโ โโ โ2โ +๐ ๐ฅ 0 ๐ฅโ ๐ฅ 0 +โ + ๐ฅโ ๐ฅ 0 โโ โ โโ +๐ ๐ฅ 0 +โ ๐ฅโ ๐ฅ 0 +โ + ๐ฅโ ๐ฅ โ โ + ๐โฒโฒโฒ(๐(๐)) ๐! ๐ซ (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐) +๐ซ ๐โฒโฒโฒ(๐(๐)) ๐! (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐) ๐ซ (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐) = (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)+ (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ โ๐)+ (๐โ ๐ ๐ +๐)(๐โ ๐ ๐ ) Set ๐ฅ= ๐ฅ 0 ๐โฒ ๐ฅ 0 =๐ ๐ฅ 0 โโ โโ โโ โ2โ +๐ ๐ฅ 0 โ + โโ โ โโ +๐ ๐ฅ 0 +โ โ 2โ โ + ๐ โฒโฒโฒ ๐ ๐ ๐! (โ ๐ ๐ )
15
Three-Point Midpoint Formula Three-Point Endpoint Formula
Sec:4.1 Numerical Differentiation Three-Point Midpoint Formula Three-Point Endpoint Formula ๐ ๐ ๐ ๐ โ๐ก ๐ ๐ ๐ ๐ +๐ก ๐ ๐ +๐ก ๐ ๐ +๐๐ก the second Lagrange polynomial ๐ ๐ฅ =๐ ๐ฅ 0 ๐ฅโ ๐ฅ 0 โโ ๐ฅโ ๐ฅ 0 โ2โ โโ โ2โ +๐ ๐ฅ 0 +โ ๐ฅโ ๐ฅ 0 ๐ฅโ ๐ฅ 0 โ2โ โ โโ +๐ ๐ฅ 0 +2โ ๐ฅโ ๐ฅ 0 ๐ฅโ ๐ฅ 0 โโ 2โ โ + ๐ โฒโฒโฒ ๐ ๐ ๐! (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) Differentiate both sides ๐โฒ ๐ฅ =๐ ๐ฅ 0 ๐ฅโ ๐ฅ 0 โโ + ๐ฅโ ๐ฅ 0 โ2โ โโ โ2โ +๐ ๐ฅ 0 +โ ๐ฅโ ๐ฅ 0 + ๐ฅโ ๐ฅ 0 โ2โ โ โโ +๐ ๐ฅ 0 +2โ ๐ฅโ ๐ฅ 0 + ๐ฅโ ๐ฅ 0 โโ 2โ โ +๐ท (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) ๐ โฒโฒโฒ ๐ ๐ ๐! +๐ท ๐ โฒโฒโฒ ๐ ๐ ๐! (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) ๐ท (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) = (๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) + (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐๐) + (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐) Set ๐ฅ= ๐ฅ 0 ๐โฒ ๐ฅ 0 =๐ ๐ฅ 0 โโ + โ2โ โโ โ2โ +๐ ๐ฅ 0 +โ โ2โ โ โโ +๐ ๐ฅ 0 +2โ โโ 2โ โ +๐ท (๐โ ๐ ๐ )(๐โ ๐ ๐ โ๐)(๐โ ๐ ๐ โ๐๐) ๐ โฒโฒโฒ ๐ ๐ ๐!
16
Sec:4.1 Numerical Differentiation
๐ซ๐๐๐๐๐๐๐๐๐๐ ๐ฟ๐๐๐๐๐๐๐ ๐ผ๐๐ก๐๐๐๐๐๐๐ก๐๐๐ ๐๐๐๐ฆ๐๐๐๐๐๐ ๐ซ๐๐๐๐๐๐๐๐๐๐ ๐ป๐๐๐๐ ๐๐๐๐๐๐๐๐ ๐๐๐ฆ๐๐๐ ๐ ๐๐๐๐๐ Use Lagrange polynomial and the given nodes to express ๐(๐ฅ) as ๐(๐ฅ)+๐๐๐๐๐ then differentiate both sides. Next set ๐ฅ = ๐ฅ 0
17
Sec:4.1 Numerical Differentiation
๐ป๐๐๐๐๐ ๐๐๐๐๐๐ ๐ ๐ฅ 0 +๐ =๐ ๐ฅ 0 +๐๐โฒ ๐ฅ ๐ 2 ๐โฒโฒ ๐ฅ ๐ 3 ๐โฒโฒโฒ ๐ฅ ๐ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐๐๐ ๐=๐ ๐ ๐ฅ 0 +โ =๐ ๐ฅ 0 +โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐๐๐ ๐=๐๐ ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐๐๐ ๐=โ๐ ๐ ๐ฅ 0 โโ =๐ ๐ฅ 0 โโ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ 0 โ 1 6 โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐๐๐ ๐=โ๐๐ ๐ ๐ฅ 0 โ2โ =๐ ๐ฅ 0 โ2โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ 0 โ 4 3 โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ
18
Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโ(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). Then find the error term [what is the order of the error O( โ ๐ ) ] ๐ โฒ ๐ ๐ =๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ +๐ฌ๐๐๐๐ ๐จ ๐ ๐ฅ 0 =๐ ๐ฅ 0 ๐ฉ ๐ ๐ฅ 0 +โ =๐ ๐ฅ 0 +โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ ๐ช ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ + โ ๐ต+2๐ถ ๐ โฒโฒ ๐ฅ 0 ๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ ๐ด+๐ต+๐ถ ๐ ๐ฅ 0 +โ ๐ต+2๐ถ ๐ โฒ ๐ฅ 0 = + ( 1 6 ๐ต๐โฒโฒโฒ ๐ฅ ๐ถ๐โฒโฒโฒ ๐ฅ 0 )โ 3 We have 3 constants to determine (A, B, C). So we need three equations ๐ด+๐ต+๐ถ =0 ๐จ= โ๐ ๐๐ ๐ฉ= ๐ ๐ ๐ช= โ๐ ๐๐ โ ๐ต+2๐ถ =0 โ ๐ต+2๐ถ =1 ๐ โฒ ๐ ๐ โโ ๐ ๐๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ +๐ โ ๐ ๐๐ ๐ ๐ ๐ +๐๐
19
Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโ(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). Then find the error term [what is the order of the error O( โ ๐ ) ] ๐ โฒ ๐ ๐ =๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ +๐ฌ๐๐๐๐ ๐จ ๐ ๐ฅ 0 =๐ ๐ฅ 0 ๐ฉ ๐ ๐ฅ 0 +โ =๐ ๐ฅ 0 +โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ ๐ช ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ + โ ๐ต+2๐ถ ๐ โฒโฒ ๐ฅ 0 ๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ ๐ด+๐ต+๐ถ ๐ ๐ฅ 0 +โ ๐ต+2๐ถ ๐ โฒ ๐ฅ 0 = + ( 1 6 ๐ต๐โฒโฒโฒ ๐ฅ ๐ถ๐โฒโฒโฒ ๐ฅ 0 )โ 3 find the error term ๐ โฒ ๐ ๐ โโ ๐ ๐๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ +๐ โ ๐ ๐๐ ๐ ๐ ๐ +๐๐ ๐จ= โ๐ ๐๐ ๐ฉ= ๐ ๐ ๐ช= โ๐ ๐๐ Leading error term =( 1 6 ๐ต๐โฒโฒโฒ ๐ฅ ๐ถ๐โฒโฒโฒ ๐ฅ 0 )โ 3 = ( ๐ ๐๐ ๐ โฒโฒโฒ ๐ ๐ โ ๐ ๐๐ ๐โฒโฒโฒ ๐ ๐ )๐ ๐ = โ ๐ ๐ ๐โฒโฒโฒ ๐ ๐ ๐ ๐ ๐ฌ๐๐๐๐=๐ถ( ๐ ๐ ) ๐ โฒ ๐ ๐ =โ ๐ ๐๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ +๐ โ ๐ ๐๐ ๐ ๐ ๐ +๐๐ โ ๐ ๐ ๐โฒโฒโฒ ๐ ๐ ๐
20
Sec:4.1 Numerical Differentiation
Example Derive a three-point formula to approximate fโโ(x0) that uses f (x0), f (x0 + h), f (x0 + 2h). ๐ โฒโฒ ๐ ๐ =๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ +๐ฌ๐๐๐๐ ๐จ ๐ ๐ฅ 0 =๐ ๐ฅ 0 ๐ฉ ๐ ๐ฅ 0 +โ =๐ ๐ฅ 0 +โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ ๐ช ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ ๐ โฒ ๐ฅ โ 2 ๐ โฒโฒ ๐ฅ โ 3 ๐ โฒโฒโฒ ๐ฅ 0 +โฏ + โ ๐ต+2๐ถ ๐ โฒโฒ ๐ฅ 0 ๐จ ๐ ๐ ๐ +๐ฉ๐ ๐ ๐ +๐ +๐ช๐ ๐ ๐ +๐๐ ๐ด+๐ต+๐ถ ๐ ๐ฅ 0 +โ ๐ต+2๐ถ ๐ โฒ ๐ฅ 0 = + ( 1 6 ๐ต๐โฒโฒโฒ ๐ฅ ๐ถ๐โฒโฒโฒ ๐ฅ 0 )โ 3 We have 3 constants to determine (A, B, C). So we need three equations ๐ด+๐ต+๐ถ =0 โ ๐ต+2๐ถ =๐ โ ๐ต+2๐ถ =๐
21
Sec:4.1 Numerical Differentiation
๐ โฒ ๐ฅ 0 =๐จ๐ ๐ฅ 0 โโ +๐ฉ ๐ ๐ฅ 0 +๐ช๐ ๐ฅ 0 +โ +๐ซ๐ ๐ฅ 0 +2โ +๐ฌ๐ ๐ฅ 0 +3โ +๐ฌ๐๐๐๐ ๐จ ๐ ๐ฅ 0 โโ =๐ ๐ฅ 0 โโ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ 0 โ 1 6 โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐ฉ ๐ ๐ฅ 0 =๐ ๐ฅ 0 ๐ช ๐ ๐ฅ 0 +โ =๐ ๐ฅ 0 +โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐ซ ๐ฌ ๐ ๐ฅ 0 +2โ =๐ ๐ฅ 0 +2โ๐โฒ ๐ฅ โ 2 ๐โฒโฒ ๐ฅ โ 3 ๐โฒโฒโฒ ๐ฅ โ 4 ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ ๐ณ๐ฏ๐บ= ๐ด+๐ต+๐ถ+๐ท+๐ธ ๐ ๐ฅ 0 +โฏ๐โฒ ๐ฅ 0 +โฏ๐โฒโฒ ๐ฅ 0 +โฏ๐โฒโฒโฒ ๐ฅ 0 +โฏ๐โฒโฒโฒโฒ ๐ฅ 0 +โฏ
22
Sec:4.1 Numerical Differentiation
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.