Presentation is loading. Please wait.

Presentation is loading. Please wait.

-Phylogenetics of Googology-

Similar presentations


Presentation on theme: "-Phylogenetics of Googology-"— Presentation transcript:

1 -Phylogenetics of Googology-
size Preinternet Era 𝑓 𝜔 𝑛 𝑓 𝜔 2 𝑛 𝑓 𝜔 𝜔 𝑛 𝑓 𝜀 0 𝑛 𝑓 Γ 0 𝑛 𝑓 𝜓 𝜖 Ω+1 (𝑛) 𝑓 𝜓 Ω 𝜔 (𝑛) 𝑓 𝜓 𝜖 Ω 𝜔 +1 (𝑛) 𝑓 𝜓 Ω Ω (𝑛) 𝑓 𝜔 1 CK 𝑛 Uncomputable Functions 𝑛< 𝑓 3 (𝑛) Tetration (Rucker, 1901) 𝑛 G(𝑛)< 𝑓 𝜀 0 𝑛 Goodstein sequence (Goodstein, 1944) 𝐴(𝑛,𝑛)< 𝑓 𝜔 (𝑛) Ackermann Function (Ackermann,1928) Feferman–Schütte ordinal Bachmann-Howard ordinal BB 𝑛 < 𝑓 𝜔 1 CK 𝑛 Busy Beaver Function (Tibor Radó, 1961) time 𝑛 ↑ 𝑛 𝑛< 𝑓 𝜔 (𝑛) Knuth’s Arrow Notation (Knuth, 1976) 𝑓 64 (4)< 𝑓 𝜔+1 (64) Graham’s Number (Gardner, 1977) Takeuchi-Feferman-Buchholz ordinal 𝑛(𝑘)< 𝑓 𝜀 𝑛 Kirby-Paris hydra (Kirby & Paris, 1982) ≈ 𝑓 𝜓 0 ( 𝜀 Ω 𝜔 +1 ) (𝑛) Buchholz hydra (Buchholz, 1987) 𝑎,𝑏,𝑐 < 𝑓 𝜔 (𝑛) Poly-Cell Notation (Saibian, 1991) E-Notations 𝑆 𝑛 < 𝑓 𝜔 1 CK 𝑛 Frantic frog function (Tibor Radó, 1961) Netcommunity Era 1996 :Start of Large Number Site 𝑐𝑔 𝑛 = n→𝑛→⋯→𝑛 𝑛 <𝑓 𝜔 2 (𝑛) Conway’s chained arrow notation (Conway, 1996) 𝑛(𝑘)< 𝑓 𝜔 𝜔 (𝑘) Block subsequence theorem (Friedman, 1998) 𝑛↑𝑛 𝑛 𝑛< 𝑓 𝜔 3 (𝑛) Bird’s rotating Arrow Notation (Bird, 2000) Circle 𝑘 < 𝑓 𝜖 0 (𝑛) Circle Theorem (Friedman, 2000) Friedman’s Graph Approaches 𝐷 5 (99)≈CoC Loader Number (Loader, 2001) 2002 : (Start of 2ch Googology Thread in Japan) 𝑆𝑆 63 3,𝑥+1,𝑆 <𝑓 𝜔 2 +1 (63) Fish’s Number Version 1 (Fish, 2002) 𝑆𝑆 63 3,𝑥+1,𝑆 <𝑓 𝜔 3 (63) Fish’s Number Version 2 (Fish, 2002) 𝐹 < 𝐹 𝜔 𝜔 𝜔 CK +1 (63) Fish Number Version 4 (Fish, 2002) 𝑠𝑠(2) 63 𝑓 <𝑓 𝜔 𝜔+1 ×63+1 (63) Fish’s Number Version 3 (Fish, 2002) Fish’s Mapping Systems 𝐹 5 63 (3)< 𝑓 𝜀 0 (𝑛−2) Fish’s Number Version 5 (Fish, 2003) 𝑓 𝜓 0 Ω 𝜔 (𝑘)<SCG(𝑘)< 𝑓 𝜓 0 ( 𝜖 Ω 𝜔 +1 ) (𝑘) Subcubic Graph Number (Friedman, 2006) TREE 𝑛 < 𝑓 𝜗( Ω 𝜔 𝜔) (𝑛) Tree Sequence (Friedman, 2006) 𝑛,𝑛,⋯,𝑛 < 𝑓 𝜔 𝜔 (𝑛) Bird’s Linear Array (Bird, 2006) 𝑛,𝑛 𝑘+1 2 < 𝑓 𝜔 𝜔 𝜔 (𝑛) Bird’s Multi-Dimensional Array (Bird, 2006) {𝑛,𝑛 1,1,⋯,1,2 2}< 𝑓 𝜔 𝜔 𝜔 𝜔 (𝑛) Bird’s Hyper-Dimensional Array (Bird, 2006) Bird’s Array Systems {n, n [1 [1 [ ... [1 [1, 2] 2] ... ] 2] 2] 2}< 𝑓 𝜀 0 𝑛 Bird’s Nested Array (Bird, 2006) 𝐴𝑘 [[… 1,…,1 …],[… 3 …] < 𝑓 𝜀 0 (𝑛) Taro’s Multiple List Ackermann function (Taro, 2007) 𝐹 6 63 (3)≈ 𝑓 𝜁 0 +1 (63) Fish’s Number Version 6 (Fish, 2007) 𝐴 1,1,⋯,1 < 𝑓 𝜔 𝜔 (𝑛) Taro’s Multivariable Ackermann function (Taro, 2007) 𝐴𝑘 1,1,⋯,1 , 𝑛 < 𝑓 𝜔 𝜔 𝜔 (𝑛) Taro’s Double List Ackermann function (Taro, 2007) Rayo Rayo’s Number (Agustín Rayo, 2007) Taro’s modified Ackermann Systems Worldwide War Era 2008 :Start of Googology Wiki E100#100#...#100< 𝑓 𝜔 99 (100) Hyper-E Notation (Saibian, 2008) FPLCI 𝑎 < SMAH + Finite Promise Games (Friedman, 2009) 𝐶 𝑎 =𝑎 → 𝑎 𝑎< 𝐹 𝜔 3 (𝑎) Peter Hurford’s extensions of chained arrow notation (Hurford, 2011) USGDCS 2 𝑘 < 𝐻𝑈𝐺𝐸 + Greedy clique sequence (Friedman, 2010) 3,3,3/2 ≈𝑓 𝜗 Ω 𝜔 +2 (3) big boowa With BEAF Legion Array (Bowers, 2013) 𝐹 ≈ 𝑅 𝜁 Fish Number Version 7 (Fish, 2013) 𝐿100,10 10,10 &,𝐿,10 ≈ 𝑓 𝜗 Ω 𝜔 ~ 𝑓 𝜓 𝜓 𝐼 Meameamealokkapoowa oompa (Bowers, 2013) Ξ 𝑛 Xi function (Adam Goucher, 2013) 10, ≈𝑓 𝜔 𝜔 (10) Gongulus with BEAF Multi Dimensional Array (Bowers, 2013) 3,3 0,2 2 ≈𝑓 𝜔 𝜔 𝜔 2 (3) Duratri with BEAF Super Dimensional Array (Bowers, 2013) 10↑↑100&10≈𝑓 𝜀 0 (101) Goppatoth with BEAF Higher Tetrational Array (Bowers, 2013) 𝑛,𝑎,𝑏,𝑐,𝑑,… ≈ 𝑓 𝜔 𝜔 𝑎 (𝑛) Array Notation (Bowers, 2013) BEAF Array Systems 𝑎$ [0] [0] 2 < 𝑓 𝜗 Ω Ω (𝑛) Extended Bracket Notation of Dollar Function (Whytagoras, 2013) 𝑎$ < 𝑓 𝜀 0 (𝑎) Bracket Notation of Dollar Function (Whytagoras, 2013) 𝑆(𝑛)< 𝑓 𝜗 𝜃 1 Ω (𝑛) Bird’s H Function (Bird, 2013) 1 0, ,1 2 ,1 < 𝑓 ≫𝜓( 𝜓 𝐼 ( 𝐼 𝜔 )) (𝑛) Linear Array Notation of Dollar Function (Whytagoras, 2013) Dollar Functions E100#^(100)100< 𝑓 𝜔 𝜔 (100) Hyper-E Notation (Saibian, 2013) E100#^#^#100< 𝑓 𝜀 0 (100) Cascading-E Notation (Saibian, 2013) 𝑛R … 𝑛 nests … 0 … < 𝑓 𝜀 0 (𝑎) Brace Notation (Hyp cos, 2013) 𝑛R𝑚 R Function (Hyp cos, 2013) {𝑛, 𝑛 [1 [1 [1 [1 [1 / / 5 2] 2] 2] 2] 2] 2]< 𝑓 𝜗 Ω 𝜔 (𝑛) Bird’s Hierarchical Hyper-Nested Array Notation (Bird, 2014) FOOT BIG FOOT (Wojowu, 2014) 1 2 / 𝑆 𝑛 2 2 < 𝑓 𝜗 Ω Ω (𝑛) Bird’s Hierarchical Hyper-Nested Array Notation (Bird, 2014) TR ZFC, <ZFC Transcendental Integer (Friedman, 2014) 𝐻(𝑛)< 𝑓 𝜗( 𝜖 Ω +1) Bird’s H Function (Bird, 2014) 𝑈(𝑛)< 𝑓 𝜗 Ω 𝜔 (𝑛) Bird’s U Function (Bird, 2014) Bashicu’s System 𝑆 𝑛 ≈𝑓 𝜗 Ω Ω (𝑛) Bird’s H Function (Bird, 2014) < 𝑓 𝜔+1 (10) Small primitive sequence number (Bashicu, 2014) <𝑓 𝜀 0 +1 (10) Primitive sequence number (Bashicu, 2014) Pair(𝑛)≈𝑓 𝜗( Ω 𝜔 ) (𝑛) Pair sequence number (Bashicu, 2014) Bashicu Matrix System (Bashicu, 2014) 𝑠(𝑛,𝑛{1{1⋯ 1,2` ⋯2`}2}2)< 𝑓 𝜗 𝜖 Ω +1 (𝑛) Expanding Array Notation (Hyp cos, 2015) s(n,n {1 ,, 1 ,, 2} 2)< 𝑓 𝜓 𝜓 𝐼 𝑛 Primary dropping array notation (Hyp cos, 2015) 𝑠(𝑛,𝑛 {1` `…`2} 2) < 𝑓 𝜗 Ω 𝜔 (𝑛) Multiple Expanding Array Notation (Hyp cos, 2015) 𝑠 𝑛,𝑛 1 1 1, < 𝑓 𝜀 0 (𝑛) Expanded Array Notation (Hyp cos, 2015) 𝑠 𝑛,⋯,𝑛 < 𝑓 𝜔 𝜔 (𝑛) Linear Array Notation (Hyp cos, 2015) 𝑛,𝑛 1 ⋅ 𝑛 2 < 𝑓 𝜀 0 (𝑛) Expanding Array Notation (Hyp cos, 2015) FOFT googol (googol) BIG FOFT (deedlit, 2016) Googol Maps -Phylogenetics of Googology- Strong Array Notations 𝑘 Little Bigeddon (Emlightened, 2017) Edited by koteitan 11 Feb 2017


Download ppt "-Phylogenetics of Googology-"

Similar presentations


Ads by Google