Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Evaluate each expression without using a calculator. 1. sin285° 2. cos285° 3. sin⁡( 11

Similar presentations


Presentation on theme: "Warm Up Evaluate each expression without using a calculator. 1. sin285° 2. cos285° 3. sin⁡( 11"— Presentation transcript:

1 Warm Up Evaluate each expression without using a calculator. 1. sin285° 2. cos285° 3. sin⁡( 11𝜋 12 ) Prove. 4. cos 𝜋 2 −𝑥 =𝑠𝑖𝑛𝑥 Simplify. 5. 𝑠𝑖𝑛 𝜋+𝑥 +𝑠𝑖𝑛 𝜋−𝑥

2 Warm Up − 𝟐 − 𝟔 𝟒 1. sin285° 2. cos285° 3. sin⁡( 11𝜋 12 ) Prove. 4. cos 𝜋 2 −𝑥 =𝑠𝑖𝑛𝑥 Simplify. 5. 𝑠𝑖𝑛 𝜋+𝑥 +𝑠𝑖𝑛 𝜋−𝑥 𝟔 − 𝟐 𝟒 𝟔 − 𝟐 𝟒

3 Warm Up Prove. 4. cos 𝜋 2 −𝑥 =𝑠𝑖𝑛𝑥 𝑐𝑜𝑠 𝜋 2 𝑐𝑜𝑠𝑥+𝑠𝑖𝑛 𝜋 2 sinx
Cosine Difference Identity 0 𝑐𝑜𝑠𝑥+ 1 sinx Evaluate 𝑠𝑖𝑛𝑥=𝑠𝑖𝑛𝑥 Simplify

4 Warm Up Simplify. 5. 𝑠𝑖𝑛 𝜋+𝑥 +𝑠𝑖𝑛 𝜋−𝑥
𝑠𝑖𝑛𝜋𝑐𝑜𝑠𝑥+𝑐𝑜𝑠𝜋𝑠𝑖𝑛𝑥+ 𝑠𝑖𝑛𝜋𝑐𝑜𝑠𝑥−𝑐𝑜𝑠𝜋𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝜋𝑐𝑜𝑠𝑥+𝑠𝑖𝑛𝜋𝑐𝑜𝑠𝑥 2𝑠𝑖𝑛𝜋𝑐𝑜𝑠𝑥 2 0 𝑐𝑜𝑠𝑥

5 Chapter 10: Trigonometric Addition Formulas (Identities)
Simplify Expressions Evaluate Expressions Prove Equations Solve Equations

6 Section 10.2 Formulas for 𝐭𝐚𝐧 𝜶±𝜷

7 Sum & Difference Formulas

8 Sum & Difference Formulas
𝒕𝒂𝒏 𝒙+𝒚 = 𝒕𝒂𝒏𝒙+𝒕𝒂𝒏𝒚 𝟏−𝒕𝒂𝒏𝒙𝒕𝒂𝒏𝒚 𝒕𝒂𝒏 𝒙−𝒚 = 𝒕𝒂𝒏𝒙−𝒕𝒂𝒏𝒚 𝟏+𝒕𝒂𝒏𝒙𝒕𝒂𝒏𝒚

9 Classwork 1. 𝑡𝑎𝑛 𝛼+𝛽 2. 𝑡𝑎𝑛 𝛼−𝛽
Suppose 𝒕𝒂𝒏𝜶=𝟐 and 𝒕𝒂𝒏𝜷=𝟑. Find: 1. 𝑡𝑎𝑛 𝛼+𝛽 𝑡𝑎𝑛 𝛼−𝛽 Find the exact value: 3. 𝑡𝑎𝑛15°+𝑡𝑎𝑛30° 1−𝑡𝑎𝑛15°𝑡𝑎𝑛30° 𝑡𝑎𝑛85°−𝑡𝑎𝑛25° 1+𝑡𝑎𝑛85°𝑡𝑎𝑛25° Suppose 𝒕𝒂𝒏𝜶= 𝟏 𝟑 and 𝒕𝒂𝒏𝜷= 𝟏 𝟐 Find 𝑡𝑎𝑛 𝛼+𝛽 6. Show that 𝑇𝑎 𝑛 − 𝑇𝑎𝑛 − = 𝜋 4

10 Classwork 1. 𝑡𝑎𝑛 𝛼+𝛽 2. 𝑡𝑎𝑛 𝛼−𝛽 Find the exact value:
Suppose 𝒕𝒂𝒏𝜶=𝟐 and 𝒕𝒂𝒏𝜷=𝟑. Find: 1. 𝑡𝑎𝑛 𝛼+𝛽 2. 𝑡𝑎𝑛 𝛼−𝛽 Find the exact value: 3. 𝑡𝑎𝑛15°+𝑡𝑎𝑛30° 1−𝑡𝑎𝑛15°𝑡𝑎𝑛30° 4. 𝑡𝑎𝑛85°−𝑡𝑎𝑛25° 1+𝑡𝑎𝑛85°𝑡𝑎𝑛25° = 𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽 1−𝑡𝑎𝑛𝛼𝑡𝑎𝑛𝛽 = 2+3 1−2∗3 = 5 −5 =−1 = 𝑡𝑎𝑛𝛼−𝑡𝑎𝑛𝛽 1+𝑡𝑎𝑛𝛼𝑡𝑎𝑛𝛽 = 2−3 1+2∗3 = −1 7 =− 1 7 =𝑡𝑎𝑛 15°+30° =𝑡𝑎𝑛45° =1 =𝑡𝑎𝑛 85°−25° =𝑡𝑎𝑛60° = 3

11 5.

12 𝛼=𝑇𝑎 𝑛 −1 1 3 and 𝛽=𝑇𝑎 𝑛 −1 1 2 Where is tan = 1 between 0 and 𝜋? 6.
𝝅 𝟒 Where is tan = 1 between 0 and 𝜋?

13 8. 𝑠𝑖𝑛 𝑥−𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 =𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦
Prove. 7. tan 𝑥− 3𝜋 4 = 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 8. 𝑠𝑖𝑛 𝑥−𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 =𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦

14 7. tan 𝑥− 3𝜋 4 = 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 = 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 Prove.
𝑡𝑎𝑛𝑥−𝑡𝑎𝑛 3𝜋 4 1+𝑡𝑎𝑛𝑥𝑡𝑎𝑛 3𝜋 4 Tan Difference Identity 𝑡𝑎𝑛𝑥− −1 1+𝑡𝑎𝑛𝑥 −1 Evaluate 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 = 𝑡𝑎𝑛𝑥+1 1−𝑡𝑎𝑛𝑥 Simplify

15 8. 𝑠𝑖𝑛 𝑥−𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 =𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦
Prove. 8. 𝑠𝑖𝑛 𝑥−𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 =𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦−𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 Sine Difference Identity 𝑠𝑖𝑛𝑥𝑐𝑜𝑠𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 − 𝑐𝑜𝑠𝑥𝑠𝑖𝑛𝑦 𝑐𝑜𝑠𝑥𝑐𝑜𝑠𝑦 Rewrite 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑦 𝑐𝑜𝑠𝑦 Simplify 𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦=𝑡𝑎𝑛𝑥−𝑡𝑎𝑛𝑦 Quotient Identity

16 Homework Page 377 #1-25 odds


Download ppt "Warm Up Evaluate each expression without using a calculator. 1. sin285° 2. cos285° 3. sin⁡( 11"

Similar presentations


Ads by Google