Presentation is loading. Please wait.

Presentation is loading. Please wait.

Short-range and tensor correlations in light

Similar presentations


Presentation on theme: "Short-range and tensor correlations in light"โ€” Presentation transcript:

1 Short-range and tensor correlations in light
nuclei studied with antisymmetrized molecular dynamics (TOAMD) Mengjiao LYU (RCNP) Masahiro ISAKA (Hosei) Hiroshi TOKI (RCNP) Hisashi HORIUCHI (RCNP) Kiyomi IKEDA (RIKEN) Tadahiro SUHARA (Matsue) Taiichi YAMADA (Kanto Gakuin) Takayuki MYO QNP , Tsukuba

2 Outline Variational methods for finite nuclei with bare force
Tensor-Optimized Antisymmetrized Molecular Dynamics (TOAMD) ฮฆ TOAMD =(1+๐น+ ๐น 2 +โ‹ฏ)ร— ฮฆ AMD Variational correlation function ๐น= ๐‘–<๐‘— ๐‘“ ๐‘–๐‘— Power series expansion using ๐น High-Momentum AMD (HM-AMD) High-momentum nucleon pairs as 2p-2h excitations Combine TOAMD & HM-AMD F

3 Deuteron properties & tensor force
Energy -2.24 MeV Kinetic 19.88 Central -4.46 Tensor -16.64 LS -1.02 P(L=2) 5.77% Radius 1.96 fm S S D ฮฆ(๐’“) D SD DD r [fm] S S D 1.22 ฮฆ (๐’Œ) D d-wave is โ€œspatially compactโ€ (high-momentum)

4 Prog. Theor. Exp. Phys. 2015, 073D02 (38 pages)
DOI: /ptep/ptv087 Tensor-optimized antisymmetrized molecular dynamics in nuclear physics (TOAMD) Takayuki Myo, Hiroshi Toki, Kiyomi Ikeda, Hisashi Horiuchi, and Tadahiro Suhara Describe finite nuclei using VNN , in particular, for clustering Multiply pair-type correlation function "๐‘ญ= ๐’Š<๐’‹ ๐‘จ ๐’‡ ๐’Š๐’‹ " to AMD w.f. ๐‘ญ ๐‘ซ for D-wave transition with S12 from tensor force ๐‘ญ ๐‘บ for Short-range repulsion in central force A. Sugie, P. E. Hodgson and H. H. Robertson, Proc. Phys. Soc. 70A (1957) 1 S. Nagata, T. Sasakawa, T. Sawada, R. Tamagaki, PTP22 (1959) 274

5 General formulation of TOAMD
| ฮฆ TOAMD = 1 +๐น ๐ท + ๐น ๐‘† + ๐น ๐ท ๐น ๐‘† + ๐น ๐‘† ๐น ๐‘† + ๐น ๐ท ๐น ๐ท +โ‹ฏ | ฮฆ AMD tensor short-range Power series expansion, but, all F are independent tensor ๏‚ด short-range Variational principle ๐›ฟ๐ธ=0 for ๐ธ= ฮฆ TOAMD ๐ป ฮฆ TOAMD ฮฆ TOAMD ฮฆ TOAMD Variational parameters AMD : n, Zi (i=1,โ€ฆ, A) ๐น ๐ท : ๐‘† 12 ๐‘› ๐‘ ๐บ ๐ถ ๐‘› ๐‘’ โˆ’ ๐‘Ž ๐‘› ( ๐’“ ๐‘– โˆ’ ๐’“ ๐‘— ) 2 ๐น ๐‘† : ๐‘› ๐‘ ๐บ ๐ถ ๐‘› โ€ฒ ๐‘’ โˆ’ ๐‘Ž ๐‘› โ€ฒ ( ๐’“ ๐‘– โˆ’ ๐’“ ๐‘— ) 2 | ฮฆ AMD =det ๐œ‘ 1 โ‹ฏ ๐œ‘ ๐ด nucleon w.f. ๐œ‘ ๐’ (๐’“)โˆ ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐’) 2 ๐œ’ ๐œŽ ๐œ’ ๐œ Gaussian wave packet spin-isospin dependent ๐‘› ๐ป ๐‘š,๐‘› โˆ’๐ธ ๐‘ ๐‘š,๐‘› ๐ถ ๐‘› =0 Eigenvalue problem

6 Matrix elements of correlated operator
Correlated Hamiltonian ฮฆ TOAMD ๐ป ฮฆ TOAMD ฮฆ TOAMD ฮฆ TOAMD = ฮฆ AMD ๐ป+ ๐น โ€  ๐ป+๐ป๐น+ ๐น โ€  ๐ป๐น+โ‹ฏ ฮฆ AMD ฮฆ AMD 1+ ๐น โ€  +๐น+ ๐น โ€  ๐น+โ‹ฏ ฮฆ AMD Correlated Norm Classify the connections of F, H into many-body operators using cluster expansion method 3-body 4-body bra Fโ€  V F ๐น โ€  ๐น= {2-body} +โ‹ฏ+ {4-body} ket i j k i j k l (2-body)2 ๐’œ ๐’œ Fourier transformation of ๐น, ๐‘‰ ๐‘’ โˆ’๐‘Ž ( ๐’“ ๐‘– โˆ’ ๐’“ ๐‘— ) 2 โ‡’ ๐‘’ โˆ’ ๐’Œ ๐Ÿ /4๐‘Ž โˆ™ ๐‘’ ๐‘–๐’Œโ‹… ๐’“ ๐‘– โˆ™ ๐‘’ โˆ’๐‘–๐’Œโ‹… ๐’“ ๐‘— ๐น โ€  ๐‘‰๐น= {2-body} +โ‹ฏ+ {6-body} (2-body)3 relative single particle

7 PLB 769 (2017) 213 PRC 95 (2017) PRC 96 (2017) PTEP (2017) 073D01 PTEP (2017) 111D01 Results 3H, 4He, (6He, 6Li) VNN : bare AV8โ€™ with central, LS, tensor terms 7 Gaussians for ๐น ๐ท , ๐น ๐‘† to converge the solutions. Successively increase the correlation terms. | ฮฆ TOAMD = 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD Single F Double F AMD F F F 4p-4h 2p-2h 3p-3h

8 TOAMD with Double ๐น 3H AV8โ€™
F TOAMD with Double ๐น AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD F are independent AMD 3H Add terms successively Reproduce the GFMC energy Small curvature as ๐น 2 terms increase ๏‚ฎ good convergence ๐‘Ÿ 2 =1.75 fm 1+๐น ๐‘† Correlation functions

9 TOAMD with Double ๐น 3H AV8โ€™
F TOAMD with Double ๐น AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD PLB769 (2017) 213 3H Kinetic/2 F are independent Reproduce the Hamiltonian components of 3H Central Tensor Correlation functions

10 TOAMD with Double ๐น 4He AV8โ€™
F TOAMD with Double ๐น AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD F are independent AMD 4He Good energy with ๐น 2 Small curvature as ๐น 2 terms increase ๏‚ฎ good convergence ๐‘Ÿ 2 =1.50 fm Next order : ๐น 3 is ongoing 1+๐น ๐‘† Correlation functions

11 Correlation functions ๐น ๐‘† , ๐น ๐ท in 3H
short-range ๐น ๐‘† (๐‘Ÿ) tensor ๐น ๐ท (๐‘Ÿ) FS 3E r2ร—FD 3E Amplitude intermediate long FS 1E Negative sign in ๐น ๐‘† to avoid short-range repulsion in VNN . Ranges of ๐น ๐ท , ๐น ๐‘† are NOT short, contributing to many-body terms.

12 Many-body terms of ๐น โ€  ๐ป๐น
Correlated Hamiltonian ๐ป = ๐ป 2โˆ’body + ๐ป 3โˆ’body +โ‹ฏ+ ๐ป ๐ดโˆ’body 4-body 3-body 3H 3-body 4He Energy Energy 2-body wide ๐œŒ low compact ๐œŒ high 2-body Many-body terms play a decisive role for energy saturation NO energy saturation within 2-body term PTEP (2017) 073D01

13 High-Momentum Antisymmetrized Molecular Dynamics (HM-AMD)
TM et al PTEP (2017) 111D Tensor correlation vs. TOSM Lyu et al PTEP (2018) 011D HM-AMD + TOAMD with AV8โ€™ TM PTEP (2018) 031D Short-range correlation with AV4โ€™ Lyu et al arXiv: Submitted to RPC Zhao et al. arXiv: Submitted to RPC

14 TOAMD for p-shell nuclei
In TOAMD, single configuration of AMD for s-shell nuclei ๏ƒž extend to multi-configuration of AMD (AMD+GCM) Multi-AMD bases to represent the NN correlations. High-Momentum AMD (HM-AMD) Kimura (2014, priv. comm.), Itagaki-Tohsaki (PRC97(2018) ) ๐’ : Centroid of Gaussian wave packet ๐’“ = Re ๐’ Spatial position ๏‚ฎ clustering, halo ๐’‘ =2โ„๐œˆ Im ๐’ Momentum component ๏‚ฎ high-momentum High-momentum in nucleon-pair is shown to describe short-range & tensor correlations as full 2p-2h excitations. ๐œ‘ ๐‘ โˆ ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐’) 2 ๐’

15 High-momentum AMD (HM-AMD)
Utilize imaginary positions in Gaussian wave packets. ๐’=๐‘–๐‘ซ with ๐‘ซ =0, 1, 2,โ‹ฏ,10 fm ๐’‘ =2โ„๐œˆ Im ๐’ =2โ„๐œˆ๐‘ซ pair ansatz : ๐’ p =๐‘–๐‘ซ, ๐’ n =โˆ’๐‘–๐‘ซ Opposite momentum direction (Itagaki) Large relative-momentum leading to 2p-2h effect Two directions of ๐‘ซ : spin-โˆฅ (z), spin-โŠฅ (๐‘ฅ) ฮจ HMโˆ’AMD = ๐‘– ๐ถ ๐‘– ฮฆ AMD ( ๐‘ซ ๐‘– ) Extendable to multi HM-pairs ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐‘–๐‘ซ) 2 ~ 5 fm โˆ’1 ๐‘–๐‘ซ ๐‘’ โˆ’๐œˆ ๐’“ 2 cf. TOAMD ๐’=๐ŸŽ โˆ’๐‘–๐‘ซ ๐‘’ โˆ’๐œˆ (๐’“+๐‘–๐‘ซ) 2 PTEP (2017) 111D01, (2018) 011D01

16 Lyuโ€™s work: HM-AMD + TOAMD
(HM-TOAMD) (RCNP, Osaka) Hybridization of HM-AMD and TOAMD TOAMD : Single correlation function ๐น ๐‘† , ๐น ๐ท HM-AMD : One high-momentum pair VNN: AV8โ€™ bare potential | ฮฆ hybrid (๐‘ซ) = 1+ ๐น ๐‘† +๐น ๐ท | ฮฆ HMโˆ’AMD ๐‘–๐‘ซ F ๐‘’ โˆ’๐œˆ (๐’“ยฑ๐‘–๐‘ซ) 2 ๐’‘ =ยฑ2โ„๐œˆ๐‘ซ | ฮฆ HMโˆ’TOAMD = ๐‘– ๐ถ ๐‘– | ฮฆ hybrid ( ๐‘ซ ๐‘– ) โˆ’๐‘–๐‘ซ

17 Energy, radius and Hamiltonian components
4He with AV8โ€™ bare interaction Superpose the basis states with different Dโ€™s for pairs. Lyu et al. PTEP 2018 (2018) 011D01, PRC submitted 4He Add bases successively

18 Energy, radius in 4He with HM-TOAMD
4He with AV8โ€™ bare interaction Superpose the basis states with different Dโ€™s for pairs. HM-TOAMD TOAMD-F2 GFMC Energy -24.74 -25.93 Kinetic 95.17 97.06 102.3 Central -52.33 -53.12 -55.05 Tensor -63.80 -64.84 -68.05 LS -3.77 -3.83 -4.75 Radius 1.51 1.50 1.49 [MeV] [fm] Lyu et al. PTEP 2018 (2018) 011D01, PRC p-shell nuclei with HM-TOAMD is in progress.

19 Summary Tensor-Optimized AMD (TOAMD) High-momentum AMD (HM-AMD)
Successive variational method for nuclei to treat VNN directly. Correlation functions : FD (tensor) , FS (short-range). F are independently optimized, better than Jastrow method. High-momentum AMD (HM-AMD) High-momentum pairs using imaginary centroids in Gaussian wave packets Comparison with shell model : โ€œOne high-momentum pairโ€ = 2p-2h correlation Hybrid : HM-TOAMD using VNN PLB 769 (2017) 213 PRC 96 (2017) PTEP (2017) 111D01 PTEP (2018) 011D01 19

20 Backup

21 TOAMD with Double ๐น 4He AV8โ€™
F TOAMD with Double ๐น AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD 4He F are independent Kinetic/2 Good energy with ๐น 2 Next order is ๐น such as ๐น ๐‘† ๐น ๐ท ๐น ๐ท . Central Tensor Correlation functions

22 TOAMD & Jastrow method TOAMD : Describe finite nuclei using VNN
Power series expansion using the correlation function ๐‘ญ ฮฆ TOAMD = 1+๐น+ ๐น 2 + ๐น 3 +โ‹ฏ ร— ฮฆ AMD ๐‘ญ ๐‘ซ : D-wave transition from tensor force ๐‘ญ ๐‘บ : Short-range repulsion in central force Jastrow method ฮฆ Jastrow = ๐‘–<๐‘— ๐ด 1+ ๐‘“ ๐‘–๐‘— ร— ฮฆ 0 (reference state) Product form : common correlation ๐‘“ ๐‘–๐‘— among all pairs. Variational Monte Carlo (VMC) is utilized to calculate ๐ป . Widely used in various fields (cond. matter, atomic, molecular,...) F are independent ๐น ๐‘› =๐นโˆ™๐นโ€ฒโˆ™๐นโ€ฒโ€ฒโ‹ฏ R. Jastrow, Phys. Rev. 98, 1479 (1955) f

23 TOAMD & VMC with Jastrow
VNN : AV6 for central & tensor forces omit LS, L2, (LS)2 from AV14 Common ๐น Energy (MeV) TOAMD (power series) gives better energy than VMC (Jastrow) from variational point of view 3H Few-body Independent optimization of all F 4He PRC 96 (2017) Correlation functions ๐น ๐ท ๐น ๐ท JPS magazine (2017) Dec. 867

24 Variation of multi-๐น in TOAMD
AV6 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD Few-body same F Kinetic/2 Central Common ๐น 3H Tensor Free F Correlation functions

25 Diagrams of cluster expansion - VNN -
2-body 3-body 4-body bra F F V V V F ket 5-body 6-body

26 Diagrams of cluster expansion, Kinetic energy
1-body 2-body 3-body 4-body bra F F T T T F ket uncorrelated kinetic energy 5-body

27 Add bases successively
Convergence of HM-AMD VNN : Central : Volkov No.2 with M= LS & Tensor : G3RS bare force ๐‘–๐‘ซ โˆ’๐‘–๐‘ซ 4He HM-AMD with 1 pair Tensor-optimized shell model (TOSM), complete 2p-2h. โ€œCriterionโ€ (0s)4 Add bases successively

28 Energy surface with the shift Dz
VNN : Central Volkov No.2 with M=0.6, Coulomb, LS & Tensor : G3RS bare force TM, K. Kato, K. Ikeda PTP113 (2005) 763 ๐œˆ=0.25 fm โˆ’2 (0s)4 2 bases : (0s)4 + pn pair with Dz Converge ๐‘˜ =2๐œˆ ๐ท ๐‘ง =2.5 fm โˆ’1 > ๐‘˜ ๐น 4He Superpose by increasing Dz ๐‘˜ = 5 fm โˆ’1 low-k high-k

29 Hamiltonian Component in HM-AMD
4He ๐‘˜ ~ 5 fm โˆ’1 ๐’‘ = โ„๐‘˜ =2โ„๐œˆ Im ๐’ ๐œˆ=0.25 fm โˆ’2

30 HM-AMD & TOSM for 4He Tensor-Optimized Shell Model HM-AMD TOSM Energy
Myo, Sugimoto, Kato, Toki, Ikeda Prog. Theor. Phys. 117 (2007) 257 Tensor-Optimized Shell Model | TOSM = ๐‘– 0 ๐ถ ๐‘– 0 |0p0h, ๐‘– ๐‘– 1 ๐ถ ๐‘– 1 |1p1h, ๐‘– ๐‘– 2 ๐ถ ๐‘– 2 |2p2h, ๐‘– 2 (MeV) HM-AMD TOSM Energy โˆ’64.7 โˆ’65.2 Kinetic 83.6 84.8 Central โˆ’83.6 โˆ’84.1 Tensor โˆ’66.3 โˆ’67.7 LS 0.8 0.9 Coulomb NO truncation of particle states in TOSM using Gaussian expansion with high-L more than 10โ„ HM-AMD = TOSM (1 pair) (full 2p-2h) ๐‘’ โˆ’๐œˆ (๐’“ยฑ๐‘–๐‘ซ) 2 Next, bare VNN (Lyu, Isaka)

31 Tensor-optimized Shell Model for 4He
| TOSM = ๐‘– 0 ๐ถ ๐‘– 0 |0p0h, ๐‘– ๐‘– 1 ๐ถ ๐‘– 1 |1p1h, ๐‘– ๐‘– 2 ๐ถ ๐‘– 2 |2p2h, ๐‘– 2 NO truncation of particle states using Gaussian expansion 4He Myo, Sugimoto, Kato, Toki, Ikeda Prog. Theor. Phys. 117 (2007) 257 9 Gaussian bases for each orbit with L โ€œCriterionโ€ to examine 2p-2h effect (0s)4 (single particle orbit)

32 Double ๐น effect in TOAMD
AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD Single SS SD DS DD ๐œ‘โˆ ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐’) 2 3H ๐œˆ= 1 2 ๐‘ 2 โ„ 2 ๐‘š ๐œˆ= โ„๐œ” 2 Single F are independent +SS Getting close to the GFMC energy. n-dependence is small due to the flexibility of F. +SD+DS +DD wide, ๐œŒ low compact, ๐œŒ high

33 TOAMD with single ๐น 3H 4He ร— 1 2 ๐œ‘โˆ ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐’) 2 1+ ๐น ๐ท +๐น ๐‘† | ฮฆ AMD
F 1+ ๐น ๐ท +๐น ๐‘† | ฮฆ AMD ร— 1 2 Kinetic 3H 4He Energy LS Central Tensor wide ๐œŒ low compact ๐œŒ high ๐œˆ= 1 2 ๐‘ 2 , ใ€€ โ„ 2 ๐‘š ๐œˆ= โ„๐œ” 2 ๐œ‘โˆ ๐‘’ โˆ’๐œˆ (๐’“โˆ’๐’) 2 Large cancelation of T & V makes the small total energy. ๐’ ๐‘– =๐ŸŽ , s-wave configuration of AMD w.f.

34 Many-body terms of ๐น โ€  ๐ป๐น in 3H
uncorrelated kinetic โ„ 2 ๐‘š ๐œˆ= โ„๐œ” 2 Kinetic Full T+ 2-body same trend in central & tensor 2-body > 3-body not negligible 3-body Central Tensor wide, ๐œŒ low comprtact, ๐œŒ high

35 Many-body Hamiltonian terms in 4He
PTEP (2017) 073D01 Kinetic 1+2 body Full 3-body Higher-body term tends to give smaller scale, but, not ignored. 4-body Central Tensor wide, ๐œŒ ๐‘™๐‘œ๐‘ค compact, ๐œŒ โ„Ž๐‘–๐‘”โ„Ž

36 Variation of multi-๐น in TOAMD
AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD PTEP (2017) 073D01 cf. Jastrow ansatz ๐น ๐ท ๐‘Ÿ , ๐น ๐‘† (๐‘Ÿ) are fixed at single level, and used in ๐น 2 terms 3H DE=1.4 MeV F are independent as a full variation Correlation functions

37 Variation of multi-๐น in TOAMD
AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD same Kinetic/2 F 3H Fixed ๐น Central Free F Few-body Tensor Correlation functions

38 Variation of multi-๐น in TOAMD
AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD PTEP (2017) 073D01 cf. Jastrow ansatz ๐น ๐ท ๐‘Ÿ , ๐น ๐‘† (๐‘Ÿ) are fixed at single level, and used in ๐น 2 terms 4He DE=2.3 MeV F are independent as a full variation Correlation functions

39 Variation of multi-๐น in TOAMD
AV8โ€™ 1+ ๐น ๐‘† +๐น ๐ท + ๐น ๐‘† ๐น ๐‘† + ๐น ๐‘† ๐น ๐ท + ๐น ๐ท ๐น ๐‘† + ๐น ๐ท ๐น ๐ท | ฮฆ AMD S D SS SD DS DD same Kinetic/2 F 4He Fixed ๐น Central Free F Tensor Independent optimization of all F Correlation functions


Download ppt "Short-range and tensor correlations in light"

Similar presentations


Ads by Google