Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cascade and Parallel Realizations for IIR filters

Similar presentations


Presentation on theme: "Cascade and Parallel Realizations for IIR filters"— Presentation transcript:

1 Cascade and Parallel Realizations for IIR filters
EMU-E&E-ENG

2

3

4

5

6

7

8

9

10

11

12

13 Examples: Assume we have a discrete-time system with the following difference equation 𝑦 𝑛 =−0.1𝑦 𝑛−1 +0.2𝑦 𝑛−2 +3𝑥 𝑛 +3.6𝑥 𝑛−1 +0.6𝑥 𝑛−2 Represent this filter using the cascade and parallel form realizations. 𝑌 𝑧 +0.1 𝑧 −1 𝑌 𝑧 −0.2 𝑧 −2 𝑌 𝑧 =3X z +3.6 𝑧 −1 𝑋 𝑧 +0.6 𝑧 −2 𝑋 𝑧 𝐻 𝑧 = 𝑌(𝑧) 𝑋(𝑧) = 𝑧 − 𝑧 − 𝑧 −1 −0.2 𝑧 −2 CASCADE FORM: 𝐻 𝑧 = 𝑌(𝑧) 𝑋(𝑧) = 𝑧 − 𝑧 − 𝑧 −1 −0.2 𝑧 −2 = 𝑧 − 𝑧 − 𝑧 −1 1−0.4 𝑧 −1

14 𝐻 1 𝑧 = 3+0.6 𝑧 −1 1+0.5 𝑧 −1 and 𝐻 2 𝑧 = 1+ 𝑧 −1 1−0.4 𝑧 −1
𝐻 𝑧 = 𝑌(𝑧) 𝑋(𝑧) = 𝑧 − 𝑧 − 𝑧 −1 −0.2 𝑧 −2 = 𝑧 − 𝑧 − 𝑧 −1 1−0.4 𝑧 −1 𝐻 1 𝑧 = 𝑧 − 𝑧 − and 𝐻 2 𝑧 = 1+ 𝑧 −1 1−0.4 𝑧 −1 x[n] z--1 3 0.6 -0.5 z--1 1 0.4 y[n]

15 PARALLEL FORM 𝐻 𝑧 = 𝑌(𝑧) 𝑋(𝑧) = 𝑧 − 𝑧 − 𝑧 −1 −0.2 𝑧 −2 Perform a long division and partial fractions to get H(z) = C + H1(z) + H2(z) 𝐻 𝑧 =− 𝑧 − 𝑧 −1 −0.2 𝑧 −2 −3+ 𝐴 1−0.4 𝑧 −1 + 𝐵 𝑧 −1 -3 −0.2 𝑧 − 𝑧 −1 +1 0.6 𝑧 − 𝑧 −1 +3 0.6 𝑧 −2 −0.3 𝑧 −1 −3 0+3.9 𝑧 −1 +6

16 3.9 𝑧 −1 +6=A 𝑧 −1 +B 1−0.4 𝑧 −1 0.5A B = (1) A+B = (2) From (1) and (2) we have A = 7 and B = -1 𝐻 𝑧 =−3+ 7 1−0.4 𝑧 −1 + − 𝑧 −1

17 z-1 1 0.4 -3 7 0.5 -1 y[n] x[n]

18 Ex: Determine the cascade realization for the filter below:
𝐻 𝑧 = 𝑧 − 𝑧 − 𝑧 −3 1− 𝑧 − 𝑧 −2 − 𝑧 −3 𝐻 𝑧 = (1+3+3 𝑧 −2 + 𝑧 −3 ) 1− 𝑧 − 𝑧 −2 − 𝑧 −3 b=[ ] a=[ ] SOS = tf2sos(b,a,’up’) If flag is ‘up’ then first row will contain poles closest to the origin and Last row will contain poles closest to the unit circle

19 SOS Numerator Denominator a0 a1 a2 b0 b1 b2 First Row 1 Second Row 2 0.3355 H z = 1+ 𝑧 −1 1− 𝑧 −1 ∗ 1+ 2𝑧 −1 + 𝑧 −2 1− 𝑧 − 𝑧 −2

20


Download ppt "Cascade and Parallel Realizations for IIR filters"

Similar presentations


Ads by Google