Download presentation
Presentation is loading. Please wait.
Published byBudi Setiabudi Modified over 6 years ago
1
Homework Log Mon 4/18 Lesson 8 – 3 Learning Objective:
To use sine & tangent of sum or difference angles to verify or find exact trig values Hw: #806 Pg – 31 odd
2
4/18/16 Lesson 8 – 3 Day 1 Sin & Tan of the Diff or Sum of Two Angles
Advanced Math/Trig
3
Learning Objective To use sine & tangent of the sum or difference of angles to Find exact Trig values Rewrite Trig identities
4
Sum & Difference Equations
sin (𝛼+𝛽) = sin 𝛼 cos 𝛽 + cos 𝛼 sin 𝛽 sin (𝛼−𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 Memorize!! tan (𝛼+𝛽) = tan 𝛼 + tan 𝛽 1− tan 𝛼 tan 𝛽 tan (𝛼−𝛽) = tan 𝛼 − tan 𝛽 1+ tan 𝛼 tan 𝛽
5
Find the Exact Value 1. sin 20 𝑜 cos 110 𝑜 − cos 20 𝑜 sin 110 𝑜
=−1 2. sin 115 𝑜 cos 20 𝑜 + cos 115 𝑜 sin 20 𝑜 = sin ( 115 𝑜 + 20 𝑜 ) = = sin ( 135 𝑜 )
6
Find the Exact Value 3. tan 43 𝑜 + tan 137 𝑜 1− tan 43 𝑜 tan 137 𝑜
=0 = tan ( −240 𝑜 ) =− tan ( 240 𝑜 ) =− 3
7
Find the exact value of tan (𝛼−𝛽)
5. Given: tan α=1.1 & tan 𝛽=3.7 tan (𝛼−𝛽) = tan 𝛼 − tan 𝛽 1+ tan 𝛼 tan 𝛽 tan (𝛼−𝛽) = 1.1−3.7 1+(1.1)(3.7) = − =− 20 39
8
Find the exact value of tan (𝛼+𝛽)
6. Given: cot α=0.7 & cot 𝛽=1.4 tan α= 1 0.7 = 10 7 tan 𝛽= 1 1.4 = 5 7 tan (𝛼+𝛽) = tan 𝛼 + tan 𝛽 1− tan 𝛼 tan 𝛽 tan (𝛼+𝛽) = − = − 50 49 = − 1 49 =−105
9
7. Find the exact value of sin 165 𝑜
sin 165 𝑜 = sin ( 120 𝑜 + 45 𝑜 ) = sin 120 𝑜 cos 45 𝑜 + cos 120 𝑜 sin 45 𝑜 = − = 6 − 2 4
10
8. Find the exact value of sin − 7𝜋 12
sin − 7𝜋 12 = −sin 7𝜋 12 =− sin 𝜋 3 + 𝜋 4 =− sin 𝜋 3 cos 𝜋 cos 𝜋 3 sin 𝜋 4 =− = − 6 − 2 4
11
9. Find the exact value of tan 5𝜋 12
= tan 𝜋 6 + tan 𝜋 4 1− tan 𝜋 6 tan 𝜋 4 tan 5𝜋 12 = tan 𝜋 6 + 𝜋 4 = − = − = − 3 3 = ∙ 3 3− 3 = − 3 ∙ =2+ 3
12
Express the trig function in terms of 𝜃
10. sin (𝜃+ 3𝜋 4 ) = sin 𝜃 cos 3𝜋 4 + cos 𝜃 sin 3𝜋 4 = sin 𝜃 − cos 𝜃 =− sin 𝜃 cos 𝜃
13
Express the trig function in terms of 𝜃
= tan 𝜃 − tan 3𝜋 1+ tan 𝜃 tan 3𝜋 11. tan (𝜃−3𝜋 ) = tan 𝜃 −0 1+ tan 𝜃 (0) = tan 𝜃
14
Find sin (𝛼−𝛽) and tan (𝛼+𝛽)
12. Given: sin α= & sin 𝛽= 5 13 𝛼 in QII and 𝛽 in QI Need to find sin 𝛼 , tan 𝛼 & cos 𝛽 , tan 𝛽 For 𝛼, y = 15 & r = 17 For 𝛽, y = 5 & r = 13 𝑥 2 + (15) 2 = 17 2 𝑥 2 + (5) 2 = (13) 2 𝑥=−8 QII 𝑥=12 QI cos𝛼=− 8 17 tan𝛼=− 15 8 cos𝛽= 12 13 tan𝛽= 5 12
15
#12 Cont’d Find sin (𝛼−𝛽) sin (𝛼−𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽
cos α=− sin𝛼= tan 𝛼 =− 15 8 cos 𝛽= sin𝛽= tan 𝛽 = 5 12 sin (𝛼−𝛽) = sin 𝛼 cos 𝛽 − cos 𝛼 sin 𝛽 = − − = =
16
#12 Cont’d Find tan (𝛼+𝛽) = − 15 8 + 5 12 1− − 15 8 5 12
cos α=− sin𝛼= tan 𝛼 =− 15 8 cos 𝛽= sin𝛽= tan 𝛽 = 5 12 = − = − − − = tan 𝛼 + tan 𝛽 1− tan 𝛼 tan 𝛽 =−
17
Ticket Out the Door Find exact value of tan 285 𝑜
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.