Download presentation
Presentation is loading. Please wait.
1
Complex Numbers – Part 2 By Dr. Samer Awad
Assistant professor of biomedical engineering The Hashemite University, Zarqa, Jordan Last update: 27 December 2018
2
13.5 Exponential Function 𝑒 𝑧
2 December December 2018 13.5 Exponential Function 𝑒 𝑧 • 𝑧=𝑥+𝑖𝑦 • 𝑒 𝑧 = 𝑒 𝑥+𝑖𝑦 = 𝑒 𝑥 𝑒 𝑖𝑦 • The complex exponential function ez can be expressed as: 𝑒 𝑧 =𝑒𝑥 (cos𝑦+𝑖 𝑠𝑖𝑛𝑦) 𝑒 𝑖𝑦 = cos𝑦+𝑖 𝑠𝑖𝑛𝑦 , but how is that?
3
Exponential Function 𝑒 𝑧
3 December December 2018 Exponential Function 𝑒 𝑧 Using Taylor series expansions we need to prove that : Euler’s formula.
4
Exponential Function 𝑒 𝑧
4 December December 2018 Exponential Function 𝑒 𝑧 • The complex exponential function ez can be expressed as: 𝑒 𝑧 =𝑒𝑥(cos𝑦+𝑖 𝑠𝑖𝑛𝑦) • Also, since 𝑧 = 𝑟(cos𝜃+𝑖 𝑠𝑖𝑛𝜃), the polar form of a complex number z can be expressed as: 𝑧 = 𝑟(cos𝜃+𝑖 𝑠𝑖𝑛𝜃) 𝑧 = 𝑟 𝑒 𝑖𝜃
5
Properties of 𝑒 𝑧 • ( 𝑒 𝑧 )′= 𝑒 𝑧 ( 𝑒 𝑧 )′= 𝑑 𝑑𝑥 ( 𝑒 𝑧 )
5 December December 2018 Properties of 𝑒 𝑧 • ( 𝑒 𝑧 )′= 𝑒 𝑧 ( 𝑒 𝑧 )′= 𝑑 𝑑𝑥 ( 𝑒 𝑧 ) • 𝑒 𝑧1 𝑒 𝑧2 =𝑒 𝑧1+𝑧2 • 𝑒 𝑖2𝜋 =1, but why? • Also, 𝑒 𝑖𝜋/2 =𝑖, 𝑒 𝑖𝜋 =−1, 𝑒 −𝑖𝜋/2 =−𝑖 • How can you plot these on the complex plane?
6
6 December December 2018 Properties of 𝑒 𝑧 • 𝑒𝑖𝑦 = cos𝑦+𝑖 𝑠𝑖𝑛𝑦 = cos2𝑦+ 𝑠𝑖𝑛2𝑦 =1 pure imaginary part amplitude=1. • Hence, 𝑒𝑧 = 𝑒 𝑥 and arg 𝑒𝑧=𝑦±𝑛2𝜋 • 𝑒 𝑧 is periodic with period = 𝑖2𝜋 – 𝑒 𝑧+𝑖𝑛2𝜋 = 𝑒 𝑧 . – All values for w= 𝑒 𝑧 are within a region = 2𝜋. – The fundamental region of 𝑒 𝑧 is: −𝜋<𝑦≤𝜋.
7
Examples: Exponential Function
7 December December 2018 Examples: Exponential Function • Find the Cartesian & polar form of 𝑒 1.4−0.6𝑖 • To prove that 𝑒 𝑧1 𝑒 𝑧2 = 𝑒 𝑧1+𝑧2 for: • Solve 𝑒 𝑧 =3+4𝑖:
8
Trigonometric Functions
8 December December 2018 Trigonometric Functions • Euler’s formula: 𝑒 𝑖𝑥 =cos𝑥+𝑖 𝑠𝑖𝑛𝑥… 𝑒𝑞 𝑒 −𝑖𝑥 =cos𝑥−𝑖 𝑠𝑖𝑛𝑥…(𝑒𝑞2) • Add the previous two eq’s (eq1+eq2) to get: 𝑒 𝑖𝑥 + 𝑒 −𝑖𝑥 =2 cos 𝑥 cos 𝑥 = 𝑒 𝑖𝑥 + 𝑒 −𝑖𝑥 • Subtract those eq’s (eq1 – eq2) to get: 𝑒 𝑖𝑥 − 𝑒 −𝑖𝑥 =2𝑖 sin 𝑥 sin 𝑥 = 1 2𝑖 𝑒 𝑖𝑥 − 𝑒 −𝑖𝑥 • Similarly, for a complex value 𝑧=𝑥+𝑖𝑦: cos 𝑧 = 𝑒 𝑖𝑧 + 𝑒 −𝑖𝑧 sin 𝑧 = 1 2𝑖 𝑒 𝑖𝑧 − 𝑒 −𝑖𝑧
9
Trigonometric Functions
9 December December 2018 Trigonometric Functions • The other trigonometric functions are defined as: tan 𝑧= sin 𝑧 cos 𝑧 cot 𝑧= cos 𝑧 sin 𝑧 sec 𝑧= 1 cos 𝑧 csc 𝑧= 1 sin 𝑧
10
sinh 𝑧 = 1 2 𝑒 𝑧 − 𝑒 −𝑧 cosh 𝑧 = 1 2 𝑒 𝑧 + 𝑒 −𝑧
10 December December 2018 Hyperbolic Functions sinh 𝑧 = 𝑒 𝑧 − 𝑒 −𝑧 cosh 𝑧 = 𝑒 𝑧 + 𝑒 −𝑧
11
11 December December 2018 Hyperbolic Functions • The complex hyperbolic cosine and sine are defined by the formulas: sinh 𝑧 = 𝑒 𝑧 − 𝑒 −𝑧 cosh 𝑧 = 𝑒 𝑧 + 𝑒 −𝑧 • Complex Trigonometric and Hyperbolic Functions Are Related: cosh 𝑖𝑧 = 𝑒 𝑖𝑧 + 𝑒 −𝑖𝑧 = cos 𝑧 sinh 𝑖𝑧= 𝑒 𝑖𝑧 − 𝑒 −𝑖𝑧 =𝑖 sin 𝑧 • Conversely: cos 𝑖𝑧 = cosh 𝑧 sin 𝑖𝑧 =𝑖 sinh 𝑧
12
Hyperbolic Functions tanh 𝑧= sinh 𝑧 cosh 𝑧 cot 𝑧= cosh 𝑧 sinh 𝑧
12 December December 2018 Hyperbolic Functions • The other trigonometric functions are defined as: tanh 𝑧= sinh 𝑧 cosh 𝑧 cot 𝑧= cosh 𝑧 sinh 𝑧 sech 𝑧= 1 cosh 𝑧 csc 𝑧= 1 sinh 𝑧
13
Examples: Trigonometric & Hyperbolic Functions
13 December December 2018 Examples: Trigonometric & Hyperbolic Functions Prove the following equation 6a
14
Examples: Trigonometric & Hyperbolic Functions
14 December December 2018 Examples: Trigonometric & Hyperbolic Functions Prove the following equation 7a
15
Example: Trigonometric & Hyperbolic Functions
15 December December 2018 Example: Trigonometric & Hyperbolic Functions • cos𝑧= 𝑒 𝑖𝑧 + 𝑒 −𝑖𝑧 𝑠𝑖𝑛𝑧= 1 2𝑖 𝑒 𝑖𝑧 − 𝑒 −𝑖𝑧 …(1)
16
Natural Logarithm Function
16 December December 2018 Natural Logarithm Function • The natural logarithm of z is denoted by: 𝒘= 𝐥𝐧 𝒛 → 𝑒 𝑤 =𝑧 𝑓𝑜𝑟 𝑧≠0 • Let 𝑧=𝑟 𝑒 𝑖𝜃 : ln 𝑧 = ln 𝑟 +𝑖 𝜃 𝑂𝑅 ln 𝑧 = ln 𝑟 +𝑖 arg 𝑧 • Since arg z corresponds to the same value every 2𝜋, ln 𝑧 has infinite values (multivalued). • The value of ln z corresponding to the principal value Arg z is denoted by Ln 𝑧 : Ln 𝑧 = ln 𝑟 +𝑖 Arg z
17
Natural Logarithm Function
17 December December 2018 Natural Logarithm Function • Ln 𝑧 is called the principal value of ln 𝑧 : Ln 𝑧 = ln |𝑧| +𝑖 Arg z ln 𝑧 = Ln 𝑧 ±𝑖 𝑛2𝜋 • If z is positive real, then Arg z = 0 and Ln z becomes regular ln(x) function from calculus. • If z is negative real, (remember ln(-x) is not defined in calculus): Ln 𝑧 = ln |𝑧| +𝑖 Arg z = ln |𝑧| +𝑖 𝜋
18
Natural Logarithm Function
18 December December 2018 Natural Logarithm Function • From: ln 𝑧 = ln 𝑟 +𝑖𝜃, it follows that: 𝑒 ln 𝑧 = 𝑒 ln 𝑟 𝑒 𝑖𝜃 =𝑧 (single-valued) • Since arg 𝑒 𝑧 =𝑦±𝑛2𝜋 , it follows that: ln 𝑒 𝑧 =𝑧±𝑖 𝑛2𝜋 (multi-valued) Remember: 𝑒 𝑧 is periodic 𝑒 𝑧 = 𝑒 𝑧±𝒊 𝒏2𝜋 ln 𝑒 𝑧 = ln 𝑒 𝑧±𝑖 𝑛2𝜋 = ln 𝑒 𝑥+𝑖𝑦±𝑖 𝑛2𝜋 =𝑥+𝑖𝑦±𝑖 𝑛2𝜋 =𝑧±𝑖 𝑛2𝜋
19
Examples: Natural Logarithm
19 December December 2018 Examples: Natural Logarithm • Solve in class
20
Examples: Natural Logarithm
20 December December 2018 Examples: Natural Logarithm
21
Natural Logarithm Function
21 December December 2018 Natural Logarithm Function • The familiar relations for the natural logarithm continue to hold for complex values: ln (𝑧1𝑧2) = ln (𝑧1) + ln (𝑧2) ln (𝑧1/𝑧2) = ln (𝑧1) − ln (𝑧2)
22
Example: Natural Logarithm
22 December December 2018 Example: Natural Logarithm • Prove that ln (𝑧1𝑧2) = ln (𝑧1) + ln (𝑧2) and that Ln (𝑧1𝑧2) ≠ Ln (𝑧1) + Ln (𝑧2) for z1 = z2 = -1
23
General Powers • 𝑧=𝑥+𝑖𝑦 • 𝑧 𝑐 = 𝑒 ln 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 .
23 December December 2018 General Powers • 𝑧=𝑥+𝑖𝑦 • 𝑧 𝑐 = 𝑒 ln 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 . • ln z is multivalued 𝑧 𝑐 is multivalued. • Hence, there is a principal value of zc which is: 𝑧 𝑐 =𝑒 c Ln 𝑧
24
General Powers • 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 .
24 December December 2018 General Powers • 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 . • If c = n = 1, 2, … then 𝑧 𝑛 is single-valued and identical with the usual nth power of z. • If c = n = -1, -2, … then 𝑧 𝑛 is also single-valued . • If c = 1/n, where n = 2, 3, … , then: 𝑧 𝑐 = 𝑧 1/𝑛 = 𝑛 𝑧 Same finite n roots explained previously.
25
General Powers • 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 .
25 December December 2018 General Powers • 𝑧 𝑐 = 𝑒 𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧≠0 . • If c=m/n, the quotient of two positive integers, the situation is similar, and 𝑧 𝑐 has only finite n distinct values (n roots). • However, if c is real irrational or complex, then 𝑧 𝑐 is infinitely many-valued. • Remember: an irrational number is any real number that cannot be expressed as a ratio of integers. Example: 𝜋, 2 .
26
Example: General Powers
26 December December 2018 Example: General Powers • Find the values of: 𝑖 𝑖 , (1+𝑖) 2−𝑖 :
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.