Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hafaliad Cylch Equation of a Circle @mathemateg /adolygumathemateg.

Similar presentations


Presentation on theme: "Hafaliad Cylch Equation of a Circle @mathemateg /adolygumathemateg."โ€” Presentation transcript:

1 Hafaliad Cylch Equation of a Circle @mathemateg /adolygumathemateg

2 Hafaliad Cylch Equation of a Circle
Mae dwy ffordd o ysgrifennu hafaliad cylch. There are two ways of writing the equation of a circle. (๐‘ฅโˆ’๐‘Ž) 2 + (๐‘ฆโˆ’๐‘) 2 = ๐‘Ÿ 2 Hafaliad cylch efo radiws ๐‘Ÿ a chanol (๐‘Ž, ๐‘). Mae hwn yn achos arbennig o Theorem Pythagoras. The equation of a circle with radius ๐‘Ÿ and centre (๐‘Ž, ๐‘). This is a special case of Pythagorasโ€™ Theorem ๐‘ฅ 2 + ๐‘ฆ 2 +2๐‘”๐‘ฅ+2๐‘“๐‘ฆ+๐‘=0 Hafaliad cyffredinol cylch efo canol (โˆ’๐‘”,โˆ’๐‘“) a radiws ๐‘” 2 + ๐‘“ 2 โˆ’๐‘ . The general equation of a circle with centre (โˆ’๐‘”,โˆ’๐‘“) and radius ๐‘” 2 + ๐‘“ 2 โˆ’๐‘ .

3 Hafaliad Cylch Equation of a Circle
Ymarfer 1 / Exercise 1 Darganfyddwch ganol a radiws y cylchoedd canlynol. Find the radius and centre of the following circles. (a) (๐‘ฅโˆ’3) 2 + (๐‘ฆ+7) 2 =25 (b) (๐‘ฅ+8) 2 + (๐‘ฆโˆ’4) 2 =20 (c) (๐‘ฅโˆ’2) 2 + (๐‘ฆ+11) 2 =49 (ch) ๐‘ฅ 2 + ๐‘ฆ 2 =144 (d) ๐‘ฅ 2 + ๐‘ฆ 2 +6๐‘ฅ+2๐‘ฆโˆ’6=0 (dd) ๐‘ฅ 2 + ๐‘ฆ 2 +14๐‘ฅโˆ’4๐‘ฆโˆ’5=0 (e) 2 ๐‘ฅ 2 + 2๐‘ฆ 2 โˆ’24๐‘ฅ+16๐‘ฆ+6=0 (f) ๐‘ฅ 2 + ๐‘ฆ 2 +7๐‘ฆ+3.25=0

4 Hafaliad Cylch Equation of a Circle
Ymarfer 1 / Exercise 1 Darganfyddwch ganol a radiws y cylchoedd canlynol. Canol Radiws Find the radius and centre of the following circles. Centre Radius (a) (๐‘ฅโˆ’3) 2 + (๐‘ฆ+7) 2 = (3, โ€“7) 5 (b) (๐‘ฅ+8) 2 + (๐‘ฆโˆ’4) 2 = (โ€“8, 4) =2 5 (c) (๐‘ฅโˆ’2) 2 + (๐‘ฆ+11) 2 = (2, โ€“11) 7 (ch) ๐‘ฅ 2 + ๐‘ฆ 2 = (0, 0) 12 (d) ๐‘ฅ 2 + ๐‘ฆ 2 +6๐‘ฅ+2๐‘ฆโˆ’6=0 (โ€“3, โ€“1) 4 (dd) ๐‘ฅ 2 + ๐‘ฆ 2 +14๐‘ฅโˆ’4๐‘ฆโˆ’5=0 (โ€“7, 2) 58 (e) 2 ๐‘ฅ 2 + 2๐‘ฆ 2 โˆ’24๐‘ฅ+16๐‘ฆ+6=0 (6, โ€“4) 7 (f) ๐‘ฅ 2 + ๐‘ฆ 2 +7๐‘ฆ+3.25= (0, โ€“3.25) 3

5 Hafaliad Cylch Equation of a Circle
Dangos bod y ddau ddull yn gyfwerth. Showing that the two methods are equivalent. ๐‘ฅ 2 + ๐‘ฆ 2 +2๐‘”๐‘ฅ+2๐‘“๐‘ฆ+๐‘=0 (๐‘ฅ+๐‘”) 2 โˆ’ ๐‘” 2 + ๐‘ฆ+๐‘“ 2 โˆ’ ๐‘“ 2 +๐‘=0 Cwblhauโ€™r sgwรขr / Completing the square (๐‘ฅ+๐‘”) 2 + (๐‘ฆ+๐‘“) 2 = ๐‘” 2 + ๐‘“ 2 โˆ’๐‘ Ail-drefnu / Re-arranging Yn cymharu efo / Comparing with (๐‘ฅโˆ’๐‘Ž) 2 + (๐‘ฆโˆ’๐‘) 2 = ๐‘Ÿ 2 : ๐‘”=โˆ’๐‘Ž ๐‘“=โˆ’๐‘ ๐‘” 2 + ๐‘“ 2 โˆ’๐‘= ๐‘Ÿ 2 โˆ’๐‘Ž=๐‘” โˆ’๐‘=๐‘“ ๐‘Ÿ 2 =๐‘” 2 + ๐‘“ 2 โˆ’๐‘ ๐‘Ž=โˆ’๐‘” ๐‘=โˆ’๐‘“ ๐‘Ÿ= ๐‘” 2 + ๐‘“ 2 โˆ’๐‘

6 Cylchoedd yn Croestorri Intersecting Circles
Ystyriwch ddau gylch ๐ถ 1 ag ๐ถ 2 , efo radiysau ๐‘Ÿ 1 ag ๐‘Ÿ 2 , yn รดl eu trefn. Gadewch i ๐‘ gynrychioliโ€™r pellter rhwng canol ๐ถ 1 a chanol ๐ถ 2 . Consider two circles ๐ถ 1 and ๐ถ 2 , with respective radii ๐‘Ÿ 1 and ๐‘Ÿ Let ๐‘‘ represent the distance between the centres of the two circles. Os yw ๐ถ 1 ag ๐ถ 2 yn croestorri mewn dau bwynt, yna ๐‘< ๐‘Ÿ 1 + ๐‘Ÿ 2 . If ๐ถ 1 and ๐ถ 2 intersect at two points, then ๐‘‘< ๐‘Ÿ 1 + ๐‘Ÿ 2 . Os yw ๐ถ 1 ag ๐ถ 2 yn cyfarfod mewn un pwynt yn unig, yna naill ai ๐‘= ๐‘Ÿ 1 + ๐‘Ÿ 2 (cyffwrdd yn allanol) neu ๐‘= ๐‘Ÿ 1 โˆ’ ๐‘Ÿ 2 (cyffwrdd yn fewnol). If ๐ถ 1 and ๐ถ 2 meet at exactly one point, then either ๐‘‘= ๐‘Ÿ 1 + ๐‘Ÿ 2 (touch externally) or ๐‘‘= ๐‘Ÿ 1 โˆ’ ๐‘Ÿ 2 (touch internally). Os nad yw ๐ถ 1 ag ๐ถ 2 yn croestorri, yna naill ai ๐‘> ๐‘Ÿ 1 + ๐‘Ÿ 2 (cylchoedd ar wahรขn) neu ๐‘< ๐‘Ÿ 1 โˆ’ ๐‘Ÿ 2 (un cylch o fewn y llall). If ๐ถ 1 and ๐ถ 2 do not intersect, then either ๐‘‘> ๐‘Ÿ 1 + ๐‘Ÿ 2 (circles are separate) or ๐‘‘< ๐‘Ÿ 1 โˆ’ ๐‘Ÿ 2 (one circle appears inside the other)

7 Theoremau Cylchoedd Circle Theorems
Mae angen bod yn gyfarwydd รขโ€™r theoremau cylchoedd canlynol. You need to be aware of the following circle theorems Maeโ€™r ongl mewn hanner cylch yn ongl sgwรขr. The angle in a semicircle is a right angle. Maeโ€™r perpendicwlar oโ€™r canol i gord yn haneruโ€™r cord. The perpendicular from the centre to a chord bisects the chord. Mae radiws cylch ar bwynt penodol ar ei gylchyn yn berpendicwlar i'r tangiad i'r cylch ar y pwynt hwnnw. The radius of a circle at a given point on its circumference is perpendicular to the tangent to the circle at that point.

8 Hafaliad y Tangiad Equation of the Tangent
Gadewch i ๐‘ƒ=(๐‘,๐‘‘) fod yn bwynt ar gylch efo canol ๐ถ=(๐‘Ž,๐‘). Let ๐‘ƒ=(๐‘,๐‘‘) be a point on the circle with centre ๐ถ=(๐‘Ž, ๐‘). Graddiant y radiws ๐‘ƒ๐ถ yw ๐‘โˆ’๐‘‘ ๐‘Žโˆ’๐‘ . The gradient of the radius ๐‘ƒ๐ถ is ๐‘โˆ’๐‘‘ ๐‘Žโˆ’๐‘ . Mae radiws a tangiad yn cyfarfod ar ongl sgwรขr, felly graddiant y tangiad iโ€™r cylch yn y pwynt ๐‘ƒ yw โˆ’ ๐‘Žโˆ’๐‘ ๐‘โˆ’๐‘‘ . Radius and tangent meet at a right angle, so the gradient of the tangent to the circle at the point ๐‘ƒ is โˆ’ ๐‘Žโˆ’๐‘ ๐‘โˆ’๐‘‘ . Hafaliad y tangiad iโ€™r cylch yn y pwynt ๐‘ƒ yw ๐‘ฆโˆ’๐‘‘=โˆ’ ๐‘Žโˆ’๐‘ ๐‘โˆ’๐‘‘ (๐‘ฅโˆ’๐‘). The equation of the tangent to the circle at the point ๐‘ƒ is ๐‘ฆโˆ’๐‘‘=โˆ’ ๐‘Žโˆ’๐‘ ๐‘โˆ’๐‘‘ (๐‘ฅโˆ’๐‘) ๐‘ƒ=(๐‘,๐‘‘) ๐ถ=(๐‘Ž,๐‘)


Download ppt "Hafaliad Cylch Equation of a Circle @mathemateg /adolygumathemateg."

Similar presentations


Ads by Google