Presentation is loading. Please wait.

Presentation is loading. Please wait.

Integration Chapter 9.

Similar presentations


Presentation on theme: "Integration Chapter 9."โ€” Presentation transcript:

1 Integration Chapter 9

2 What is Integration? Method of constructing a function from its derivative Inverse of differentiation Suppose Fโ€™(x) = f(x). This is equivalent to ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =๐น ๐‘ฅ +๐ถ C is added to incorporate the fact that derivative of a constant is 0

3 Common Integration Rules
๐‘ฅ ๐‘Ž ๐‘‘๐‘ฅ = ๐‘ฅ ๐‘Ž+1 ๐‘Ž+1 +๐ถ ๐‘Žโ‰ 1 1 ๐‘ฅ ๐‘‘๐‘ฅ = ln |๐‘ฅ| +๐ถ 1 ๐‘ฅ+๐‘Ž ๐‘‘๐‘ฅ = ln |๐‘ฅ+๐‘Ž| +๐ถ ๐‘’ ๐‘Ž๐‘ฅ ๐‘‘๐‘ฅ = ๐‘’ ๐‘Ž๐‘ฅ ๐‘Ž +๐ถ (๐‘Žโ‰ 0) ๐‘Ž ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘Ž ๐‘ฅ ln ๐‘ฅ +๐ถ (๐‘Ž>0, ๐‘Žโ‰ 1)

4 General Integration Rules
๐‘Ž๐‘“(๐‘ฅ)๐‘‘๐‘ฅ =๐‘Žโˆ™ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ (๐‘Ž ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก) [๐‘“ ๐‘ฅ +๐‘” ๐‘ฅ ] ๐‘‘๐‘ฅ = ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ+ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ Integration by substitution: Calculate 2๐‘ฅ ln (๐‘ฅ 2 + ๐‘Ž 2 ) ๐‘‘๐‘ฅ

5 Area and Definite Integral
๐’‡ ๐’™ ๐Ÿ โˆ†๐’™โ‰ค๐ด ๐‘ฅ 1 +โˆ†๐‘ฅ โˆ’๐ด( ๐‘ฅ 1 )โ‰ค๐’‡( ๐’™ ๐Ÿ +โˆ†๐’™)โˆ†๐’™

6 Definite Integral Properties
๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ=โˆ’ ๐‘ ๐‘Ž ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘Ž ๐‘Ž ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ=0 ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘ ๐‘‘๐‘ก ๐‘Ž ๐‘ก ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ=๐‘“(๐‘ก) ๐‘‘ ๐‘‘๐‘ก ๐‘Ž(๐‘ก) ๐‘(๐‘ก) ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ=๐‘“ ๐‘ ๐‘ก ๐‘ โ€ฒ ๐‘ก โˆ’๐‘“ ๐‘Ž ๐‘ก ๐‘Žโ€ฒ(๐‘ก)

7 Integration by Parts ๐‘“ ๐‘ฅ ๐‘” โ€ฒ ๐‘ฅ ๐‘‘๐‘ฅ =๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ โˆ’ ๐‘“ โ€ฒ ๐‘ฅ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ
๐‘“ ๐‘ฅ ๐‘” โ€ฒ ๐‘ฅ ๐‘‘๐‘ฅ =๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ โˆ’ ๐‘“ โ€ฒ ๐‘ฅ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ School formula ๐‘ข ๐‘ฅ ๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฅ =๐‘ข ๐‘ฅ ๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฅ โˆ’ ๐‘ข โ€ฒ ๐‘ฅ ๐‘ฃ ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ

8 Infinite intervals for integration
๐‘Ž โˆž ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= lim ๐‘โ†’โˆž ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ โˆ’โˆž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= lim ๐‘Žโ†’โˆ’โˆž ๐‘Ž ๐‘ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

9 Differential Equations
๐‘ฅ ๐‘ก =๐‘“ ๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก =๐‘“ ๐‘ก ๐‘‘๐‘ฅ=๐‘“ ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ = ๐‘“ ๐‘ก ๐‘‘๐‘ก

10 Special types of differentiable function
๐‘ฅ ๐‘ก =๐‘Ÿ๐‘ฅ(๐‘ก) => ๐‘ฅ ๐‘ก = ๐‘ฅ 0 ๐‘’ ๐‘Ÿ๐‘ก ๐‘ฅ ๐‘ก =๐‘Ž(๐พ โˆ’๐‘ฅ ๐‘ก ) => ๐‘ฅ ๐‘ก =๐พโˆ’(๐พโˆ’ ๐‘ฅ 0 ) ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘ฅ ๐‘ก =๐‘Ÿ๐‘ฅ(๐‘ก) 1 โˆ’ ๐‘ฅ ๐‘ก ๐พ => ๐‘ฅ ๐‘ก = ๐พ 1+ ๐พโˆ’ ๐‘ฅ 0 ๐‘ฅ 0 ๐‘’ โˆ’๐‘Ÿ๐‘ก

11 Problem Let N(t) denote the number of people in a country whose homes have broadband internet. Suppose that the rate at which new people get access is proportional to the number of people who still have no access. If the population size is P , the differential equation for N(t) is then ๐‘ (๐‘ก)= ๐‘˜(๐‘ƒ โˆ’ ๐‘(๐‘ก)) where k is a positive constant. Find the solution of this equation if N(0) = 0. Then find the limit of N(t) as t โ†’ โˆž.

12 Problem A countryโ€™s annual natural rate of population growth (births minus deaths) is 2%. In addition there is a net immigration of persons per year. Write down a differential equation for the function N(t) which denotes the number of persons in the country at time t (year). Suppose that the population at time t = 0 is Find N(t).

13 First-order Linear differential equations
๐‘ฅ ๐‘ก +๐‘Ž ๐‘ก ๐‘ฅ ๐‘ก =๐‘ ๐‘ก a(t) and b(t) are not constants. They are functions of t! If the equation looks like: ๐‘ฅ ๐‘ก +๐‘Ž๐‘ฅ ๐‘ก =๐‘ ๐‘ก , solution for this differential equation is: 1 ๐‘’ ๐‘Ž๐‘ก ๐‘‘ ๐‘’ ๐‘Ž๐‘ก ๐‘ฅ ๐‘‘๐‘ก =๐‘(๐‘ก) โ‡’ ๐‘’ ๐‘Ž๐‘ก ๐‘ฅ= ๐‘(๐‘ก) ๐‘’ ๐‘Ž๐‘ก ๐‘‘๐‘ก โ‡’ ๐‘ฅ ๐‘ก =๐ถ ๐‘’ โˆ’๐‘Ž๐‘ก + ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘’ โˆ’๐‘Ž๐‘ก ๐‘ ๐‘ก ๐‘‘๐‘ก Solve ๐‘ฅ +3๐‘ฅ=๐‘ก ๐‘’ ๐‘ก 2 โˆ’3๐‘ก


Download ppt "Integration Chapter 9."

Similar presentations


Ads by Google