Download presentation
Presentation is loading. Please wait.
Published byἸάκωβος Ζάππας Modified over 6 years ago
1
Chris Medcraft Dror Bittner, Nick Walker, Tony Legon
Microwave spectroscopy and structure determination of H2S MI (M=Cu, Ag, Au) Chris Medcraft Dror Bittner, Nick Walker, Tony Legon
2
Chirped-pulse Fourier transform microwave spectrometer (CP-FTMW)
Nd:Yag 532 nm laser ~25 mJ/pulse N. R. Walker et al., Phys. Chem. Chem. Phys., 16, 2014, 25221
4
CP-FTMW Spectrometer S. L. Stephens, N. R. Walker, J. Mol. Spectr., 263, 27 (2010).
5
Newcastle Ablation Sources
13mm
6
Small ablation source
7
Metal Complexes PdCCC M + CF3I MI XMY M + CCl4 MCl
X=C2H2, H2S, H2O, NH3,c-C3H6, TMA…. M + SF6 MF M = Cu, Ag, Au, Pb, Sn,Pt, Pd M + CF3I Ar---MI MI Ar---MI Ag + CCl4 AgCCCl Cu + CCl4 CuCCCl Zaleski et al. J. Phys. Chem. A 2015, 119, 2919 H2CCCH2 HCCH H2CCH2 CH4 C4H4O (furan) PdCCC Palladium Rod Bittner et al. Angew. Chem. Int. Ed. 2016, 55, 3768
8
H2SMI (M = Cu, Ag, Au) Ablation target: solid Cu or Ag rod or Au foil
Gas mixture: CF3I and H2S in argon (≈1%) >10 species identified in MW spectra Intensity / μV
9
H2S63CuI 0.8 Intensity / μV 0.0 63Cu/65Cu = 0.69/0.31 0.7
1.3 M FIDs 0.0 63Cu/65Cu = 0.69/0.31 D2S63CuI 0.7 17220 17224 17228 Intensity / μV 2.1 M FIDs Frequency [MHz] 0.0 0.4 HDS63CuI 1.4 M FIDs Intensity / μV 0.0 18080 18100 Frequency [MHz] 18428 18430 18432 18434 Frequency [MHz]
10
H2SAgI K-1=1 transitions detected for D2S109AgI and D2S107AgI
K-1=1 transitions overlap K-1=0 at lower J’s B-C ≈ 500 kHz 107Ag/109Ag = 0.52/0.48 D2S109AgI D2S107AgI D2S109AgI D2S107AgI 0.5 0.7 J = 98 J = 1514 Intensity / μV Intensity / μV 0.0 0.0 00000 Frequency [MHz] Frequency [MHz]
11
D2SAuI No K-1 = 1 transitions identified B-C ≈ 250 kHz
K-1 = 1 transitions would overlap with K-1 = 0 transitions J = 1413 J = 1514 16815 16820 18016 18020 18024 Frequency [MHz] Frequency [MHz]
12
H2SMI (M=Cu, Ag, Au) Only K-1=0 transitions found for H2S and HDS species K-1=1 transitions found for D2S---CuI and D2S---AgI (not Au) H2S---HX, H2S---XY and H2S---MX K-1=1 transitions usually absent H2O---HX, H2O---XY and H2O---MX K-1=1 transitions usually stronger than K-1=0 Intensity / μV
13
H2SMI (M=Cu, Ag, Au) H2OHX, XY or MX H2SHX, XY or MX
Low, narrow barrier Rapid tunnelling Effective C2v symmetry H2SHX, XY or MX High, wide barrier No tunnelling Cs Symmetry
14
H2SMI (M=Cu, Ag, Au) In H2O complexes, protons are equivalent for a C2 rotation Cooling from 110/111 to 101 forbidden Higher effective rotational temperature Protons not equivalent in H2S complexes Collisions cool rotational states Less population in K-1=1 levels
15
D2SMI (M=Cu, Ag, Au) K-1=0/K-1=1 separation H2SCuI D2SCuI
∆𝐸 ≈(𝐴−𝐵)ℎ H2SCuI A ≈ 150 GHz D2SCuI A ≈ 75 GHz K-1=1 levels more populated in D2S complexes c.f H2S complexes
16
Molecular Geometry re = CCSD(T)(F12*)/cc-pVTZ+def2-QZVPP
H2S---63/65CuI HDS---63/65CuI D2S---63/65CuI H2S---107/109AgI HDS---107/109AgI D2S---107/109AgI H2S---AuI HDS---AuI D2S---AuI H2S···CuI H2S···AgI H2S···AuI r0 (exp.) re r(MI) / Å 2.3603(83) 2.3668 2.5484(94) [2.5220] 2.5203 r(MS) / Å 2.175(14) 2.1624 2.409(18) (19) 2.3038 φ / a 75.00(47) 74.513 78.43(76) 77.559 71.216(13) 72.951 re = CCSD(T)(F12*)/cc-pVTZ+def2-QZVPP
17
Acknowledgements Newcastle University Nick Walker John Mullaney Dror Bittner Argonne National Laboratory Daniel Zaleski University of Bristol Tony Legon Colin Western
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.