Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chris Medcraft Dror Bittner, Nick Walker, Tony Legon

Similar presentations


Presentation on theme: "Chris Medcraft Dror Bittner, Nick Walker, Tony Legon"— Presentation transcript:

1 Chris Medcraft Dror Bittner, Nick Walker, Tony Legon
Microwave spectroscopy and structure determination of H2S MI (M=Cu, Ag, Au) Chris Medcraft Dror Bittner, Nick Walker, Tony Legon

2 Chirped-pulse Fourier transform microwave spectrometer (CP-FTMW)
Nd:Yag 532 nm laser ~25 mJ/pulse N. R. Walker et al., Phys. Chem. Chem. Phys., 16, 2014, 25221

3

4 CP-FTMW Spectrometer S. L. Stephens, N. R. Walker, J. Mol. Spectr., 263, 27 (2010).

5 Newcastle Ablation Sources
13mm

6 Small ablation source

7 Metal Complexes PdCCC M + CF3I  MI XMY M + CCl4  MCl
X=C2H2, H2S, H2O, NH3,c-C3H6, TMA…. M + SF6  MF M = Cu, Ag, Au, Pb, Sn,Pt, Pd M + CF3I Ar---MI MI Ar---MI Ag + CCl4  AgCCCl Cu + CCl4  CuCCCl Zaleski et al. J. Phys. Chem. A 2015, 119, 2919 H2CCCH2 HCCH H2CCH2 CH4 C4H4O (furan) PdCCC Palladium Rod Bittner et al. Angew. Chem. Int. Ed. 2016, 55, 3768

8 H2SMI (M = Cu, Ag, Au) Ablation target: solid Cu or Ag rod or Au foil
Gas mixture: CF3I and H2S in argon (≈1%) >10 species identified in MW spectra Intensity / μV

9 H2S63CuI 0.8 Intensity / μV 0.0 63Cu/65Cu = 0.69/0.31 0.7
1.3 M FIDs 0.0 63Cu/65Cu = 0.69/0.31 D2S63CuI 0.7 17220 17224 17228 Intensity / μV 2.1 M FIDs Frequency [MHz] 0.0 0.4 HDS63CuI 1.4 M FIDs Intensity / μV 0.0 18080 18100 Frequency [MHz] 18428 18430 18432 18434 Frequency [MHz]

10 H2SAgI K-1=1 transitions detected for D2S109AgI and D2S107AgI
K-1=1 transitions overlap K-1=0 at lower J’s B-C ≈ 500 kHz 107Ag/109Ag = 0.52/0.48 D2S109AgI D2S107AgI D2S109AgI D2S107AgI 0.5 0.7 J = 98 J = 1514 Intensity / μV Intensity / μV 0.0 0.0 00000 Frequency [MHz] Frequency [MHz]

11 D2SAuI No K-1 = 1 transitions identified B-C ≈ 250 kHz
K-1 = 1 transitions would overlap with K-1 = 0 transitions J = 1413 J = 1514 16815 16820 18016 18020 18024 Frequency [MHz] Frequency [MHz]

12 H2SMI (M=Cu, Ag, Au) Only K-1=0 transitions found for H2S and HDS species K-1=1 transitions found for D2S---CuI and D2S---AgI (not Au) H2S---HX, H2S---XY and H2S---MX K-1=1 transitions usually absent H2O---HX, H2O---XY and H2O---MX K-1=1 transitions usually stronger than K-1=0 Intensity / μV

13 H2SMI (M=Cu, Ag, Au) H2OHX, XY or MX H2SHX, XY or MX
Low, narrow barrier Rapid tunnelling Effective C2v symmetry H2SHX, XY or MX High, wide barrier No tunnelling Cs Symmetry

14 H2SMI (M=Cu, Ag, Au) In H2O complexes, protons are equivalent for a C2 rotation Cooling from 110/111 to 101 forbidden Higher effective rotational temperature Protons not equivalent in H2S complexes Collisions cool rotational states Less population in K-1=1 levels

15 D2SMI (M=Cu, Ag, Au) K-1=0/K-1=1 separation H2SCuI D2SCuI
∆𝐸 ≈(𝐴−𝐵)ℎ H2SCuI A ≈ 150 GHz D2SCuI A ≈ 75 GHz K-1=1 levels more populated in D2S complexes c.f H2S complexes

16 Molecular Geometry re = CCSD(T)(F12*)/cc-pVTZ+def2-QZVPP
H2S---63/65CuI HDS---63/65CuI D2S---63/65CuI H2S---107/109AgI HDS---107/109AgI D2S---107/109AgI H2S---AuI HDS---AuI D2S---AuI    H2S···CuI H2S···AgI H2S···AuI r0 (exp.) re r(MI) / Å 2.3603(83) 2.3668 2.5484(94) [2.5220] 2.5203 r(MS) / Å 2.175(14) 2.1624 2.409(18) (19) 2.3038 φ /  a 75.00(47) 74.513 78.43(76) 77.559 71.216(13) 72.951 re = CCSD(T)(F12*)/cc-pVTZ+def2-QZVPP

17 Acknowledgements Newcastle University Nick Walker John Mullaney Dror Bittner Argonne National Laboratory Daniel Zaleski University of Bristol Tony Legon Colin Western


Download ppt "Chris Medcraft Dror Bittner, Nick Walker, Tony Legon"

Similar presentations


Ads by Google