Presentation is loading. Please wait.

Presentation is loading. Please wait.

A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Introduction.

Similar presentations


Presentation on theme: "A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Introduction."โ€” Presentation transcript:

1 A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Introduction Permutation-based approaches address statistical issues in genetic association studies as: small sample sizes, rare genetic variants, design imbalances or non-normal phenotypes Significance levels of interest are usually very small ๏ƒ  permutation-based approaches are computational intensive Adaptive permutation strategies in existing genetic association analysis tools (e.g. PLINK Chang et al. 2015) use heuristics to stop early if the p-value is obviously non-significant Sequential testing approach ๐‘ true, unknown association p-value sequence ๐‘ฅ 1 , ๐‘ฅ 2 ,โ€ฆ where ๐‘ฅ 1 =1 iff permuted statistic more extreme, 0 otherwise We introduce a small indifference region and consider the hypotheses ๐ป 1 :๐‘โ‰ค ๐‘ 1 and ๐ป 2 :๐‘โ‰ฅ ๐‘ 2 = ๐‘ 1 +๐‘‘ (e.g. ๐‘ 1 =5โˆ— 10 โˆ’8 and ๐‘‘= 10 โˆ’8 )

2 A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Objects Pre-specified error probabilities ๐›ผ 1 , ๐›ผ 2 (e.g. ๐›ผ 1 = ๐›ผ 2 = 10 โˆ’10 ). Define (Pavlov 1991) ๐œ ๐‘– ๐›ผ ๐‘– โ‰”min{๐‘›: ๐œ‹ ๐‘› / sup ๐œƒโˆˆ ๐ท ๐‘– ๐‘ ๐‘› ๐œƒ, ๐‘ฅ ๐‘› โ‰ฅ ๐›ผ ๐‘– โˆ’1 } for ๐‘–=1,2, where ๐ท 1 = 0, ๐‘ 1 , ๐ท 2 = ๐‘ 2 ,1 , ๐‘ฅ ๐‘› = ๐‘ฅ 1 ,โ€ฆ, ๐‘ฅ ๐‘› , ๐‘ ๐‘› ๐œƒ, ๐‘ฅ ๐‘› = ๐‘–=1 ๐‘› ๐‘( ๐œƒ, ๐‘ฅ ๐‘– ), ๐œ‹ ๐‘› โ‰” ๐‘–=1 ๐‘› ๐‘( ๐œƒ ๐‘–โˆ’1 , ๐‘ฅ ๐‘– ) and ๐œฝ ๐’Šโˆ’๐Ÿ โ‰” ๐’Œ=๐Ÿ ๐’Šโˆ’๐Ÿ ๐’™ ๐’Œ + ๐Ÿ ๐Ÿ ๐’Š . ๐‘(๐œƒ,๐‘ฅ) Bernoulli density with parameter ๐œƒ. Decision procedure STr If ๐œ 1 ๐›ผ 1 โ‰ค ๐œ 2 ( ๐›ผ 2 ), we set ๐œ•=2 and ๐‘= ๐œ 1 ( ๐›ผ 1 ). If ๐œ 1 ๐›ผ 1 > ๐œ 2 ( ๐›ผ 2 ), we set ๐œ•=1 and ๐‘= ๐œ 2 ( ๐›ผ 2 ).

3 A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Theorem (Pavlov 1991, Tartakovsky 2014) 1.) ๐‘ƒ ๐œƒ ๐›ฟ=2 โ‰ค ๐›ผ 1 for ๐œƒโˆˆ ๐ท 1 and ๐‘ƒ ๐œƒ ๐›ฟ=1 โ‰ค ๐›ผ 2 for ๐œƒโˆˆ ๐ท 2 2.) Let ๐พ ๐‘ก 1 , ๐‘ก 2 ,๐›ผ be the class of all decision rules ( ๐‘ โ€ฒ , ๐œ• โ€ฒ ) such that ๐‘ƒ ๐œƒ ๐›ฟโ€ฒ=2 โ‰ค ๐‘ก 1 ๐›ผ for ๐œƒโˆˆ ๐ท 1 and ๐‘ƒ ๐œƒ ๐›ฟโ€ฒ=1 โ‰ค ๐‘ก 2 ๐›ผ for ๐œƒโˆˆ ๐ท 2 , then ๐ธ ๐œƒ ๐‘ inf ๐‘ โ€ฒ , ๐œ• โ€ฒ โˆˆ๐พ ๐‘ก 1 , ๐‘ก 2 ,๐›ผ ๐ธ ๐œƒ ๐‘ โ€ฒ =1+๐‘œ 1 as ๐›ผโ†’0 for all ๐œƒโˆˆ 0,1 . Error probabilities are strictly controlled Approaches theoretical minimum number of expected permutations if error level goes to zero

4 A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Comparison with confidence interval based approach ๐‘ empirical estimate of p-value after ๐‘› permutations ( ๐‘ โˆ’ ๐‘ ๐›ผ ๐‘†๐ธ, ๐‘ +๐‘ ๐›ผ ๐‘†๐ธ) corresponding 1โˆ’๐›ผ confidence interval CI-based rule (CIr) choose ๐œ•=1 if ๐‘ + ๐‘ ๐›ผ ๐‘†๐ธโ‰ค ๐‘ 2 , set ๐œ•=2 if ๐‘ โˆ’ ๐‘ ๐›ผ ๐‘†๐ธโ‰ฅ ๐‘ 1 Ratio STr/CIr ratio overall number of permutations needed for 12,045,191 single variant tests in LD (simulated) Red scenario: Type 1 error at least for CIr ๐’‘ ๐Ÿ / ๐’‘ ๐Ÿ ๐œถ ๐Ÿ / ๐œถ ๐Ÿ ๐œถ CIr ratio STr/CIr 1e-09/2e-09 1e-10/1e-10 1e-10 12.62 5e-08/6e-08 6.39 9e-04/1e-03 1e-10/4e-03 1.11

5 A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Our approachโ€ฆ โ€ฆ can be applied to arbitrary association test statistics. โ€ฆ controls the error probabilities rigorously and approaches the theoretical minimum in terms of expected number of permutations. โ€ฆ is easy to implement and no additional computational effort is required. โ€ฆ is an alternative approach to sequential Monte Carlo hypothesis testing (Gandy 2009). Example code available at: Contact: Julian Hecker


Download ppt "A nearly optimal sequential testing approach to permutation-based association testing Julian Hecker, Ingo Ruczinski, Brent Coull, Christoph Lange Introduction."

Similar presentations


Ads by Google