Presentation is loading. Please wait.

Presentation is loading. Please wait.

Function Operations and Composition of Functions Unit 1 Lesson 6

Similar presentations


Presentation on theme: "Function Operations and Composition of Functions Unit 1 Lesson 6"โ€” Presentation transcript:

1 Function Operations and Composition of Functions Unit 1 Lesson 6

2 Function Operations and Composition of Functions
Students will be able to: Combine standard function types using arithmetic operations Compose functions Key Vocabulary: Function operation Composition of function Decomposition of Composite Functions Domain of composite function

3 Function Operations and Composition of Functions
Let ๐’‡ and ๐’ˆ be any two functions. You can add, subtract, multiply or divide ๐’‡ ๐’™ and ๐’ˆ(๐’™) to form a new function. The domain of new function consist of the ๐’™ -values that are in the domains of both ๐’‡ ๐’™ and ๐’ˆ(๐’™). When new function involves division, the domain does not include ๐’™ -values for which the denominator is equal to zero.

4 Function Operations and Composition of Functions
Definition Addition ๐’‡+๐’ˆ ๐’™ =๐’‡ ๐’™ +๐’ˆ(๐’™) Subtraction ๐’‡โˆ’๐’ˆ ๐’™ =๐’‡ ๐’™ โˆ’๐’ˆ(๐’™) Multiplication ๐’‡โˆ—๐’ˆ ๐’™ =๐’‡ ๐’™ โˆ—๐’ˆ(๐’™) Division ๐’‡รท๐’ˆ ๐’™ =๐’‡ ๐’™ รท๐’ˆ(๐’™) ๐’‡ ๐’ˆ ๐’™ = ๐’‡ ๐’™ ๐’ˆ(๐’™) ๐’˜๐’‰๐’†๐’“๐’† ๐’ˆ(๐’™)โ‰ ๐ŸŽ

5 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. a. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ“

6 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. a. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ“ ๐’‡+๐’ˆ ๐’™ = (๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ)+(๐’™โˆ’๐Ÿ“) ๐’‡+๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ‘๐’™โˆ’๐Ÿ” ๐‘ซ ๐’‡+๐’ˆ =(โˆ’โˆž,โˆž)

7 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. a. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ“ ๐’‡โˆ’๐’ˆ ๐’™ = (๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ)โˆ’ ๐’™โˆ’๐Ÿ“ ๐’‡โˆ’๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿโˆ’๐’™+๐Ÿ“ ๐’‡โˆ’๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐’™+๐Ÿ’ ๐‘ซ ๐’‡โˆ’๐’ˆ =(โˆ’โˆž,โˆž)

8 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. a. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ“ ๐’‡โˆ—๐’ˆ ๐’™ = (๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ)โˆ—(๐’™โˆ’๐Ÿ“) ๐’‡โˆ—๐’ˆ ๐’™ = ๐’™ ๐Ÿ‘ โˆ’๐Ÿ‘ ๐’™ ๐Ÿ โˆ’๐Ÿ๐Ÿ๐’™+๐Ÿ“ ๐‘ซ ๐’‡โˆ—๐’ˆ = โˆ’โˆž,โˆž

9 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. a. ๐’‡ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ“ ๐’‡ ๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ๐’™โˆ’๐Ÿ ๐’™โˆ’๐Ÿ“ ๐‘ซ ๐’‡ ๐’ˆ =(โˆ’โˆž,๐Ÿ“)โˆช(๐Ÿ“,โˆž)

10 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. b. ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’ˆ ๐’™ =๐’™+๐Ÿ—

11 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. b. ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’ˆ ๐’™ =๐’™+๐Ÿ— ๐’‡+๐’ˆ ๐’™ =( ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ) +(๐’™+๐Ÿ—) ๐’‡+๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐’™โˆ’๐Ÿ•๐Ÿ ๐‘ซ ๐’‡+๐’ˆ =(โˆ’โˆž,โˆž)

12 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. b. ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’ˆ ๐’™ =๐’™+๐Ÿ— ๐’‡โˆ’๐’ˆ ๐’™ = (๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ)โˆ’ ๐’™+๐Ÿ— ๐’‡โˆ’๐’ˆ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿโˆ’๐’™โˆ’๐Ÿ— ๐’‡โˆ’๐’ˆ ๐’™ = ๐’™ ๐Ÿ โˆ’๐’™โˆ’๐Ÿ—๐ŸŽ ๐‘ซ ๐’‡โˆ’๐’ˆ =(โˆ’โˆž,โˆž)

13 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. b. ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’ˆ ๐’™ =๐’™+๐Ÿ— ๐’‡โˆ—๐’ˆ ๐’™ = (๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ)โˆ—(๐’™+๐Ÿ—) ๐’‡โˆ—๐’ˆ ๐’™ = ๐’™ ๐Ÿ‘ +๐Ÿ— ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ๐’™โˆ’๐Ÿ•๐Ÿ๐Ÿ— ๐‘ซ ๐’‡โˆ—๐’ˆ =(โˆ’โˆž,โˆž)

14 Function Operations and Composition of Functions
Sample Problem 1: : Find ๐’‡+๐’ˆ ๐’™ , ๐’‡โˆ’๐’ˆ ๐’™ , ๐’‡โˆ—๐’ˆ ๐’™ , and ๐’‡ ๐’ˆ ๐’™ for each ๐’‡ ๐’™ and ๐’ˆ(๐’™). Determine the domain of each new function. b. ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’ˆ ๐’™ =๐’™+๐Ÿ— ๐’‡ ๐’ˆ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ–๐Ÿ ๐’™+๐Ÿ— = (๐’™+๐Ÿ—)(๐’™โˆ’๐Ÿ—) ๐’™+๐Ÿ— ๐’‡ ๐’ˆ =๐’™โˆ’๐Ÿ— If the function can be simplified, determine the domain before simplifying! ๐‘ซ ๐’‡ ๐’ˆ =(โˆ’โˆž,โˆ’๐Ÿ—)โˆช(โˆ’๐Ÿ—,โˆž)

15 Function Operations and Composition of Functions
The composition of function ๐’‡ with function ๐’ˆ is defined by ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ(๐’™) The domain of the composite function ๐’‡โˆ˜๐’ˆ is the set of all such that: 1. ๐’™ is in the domain of ๐’ˆ and 2. ๐’ˆ ๐’™ is in the domain of ๐’‡.

16 Function Operations and Composition of Functions
๐’™ ๐’Ž๐’–๐’”๐’• ๐’ƒ๐’† ๐’Š๐’ ๐’•๐’‰๐’† ๐’…๐’๐’Ž๐’‚๐’Š๐’ ๐’๐’‡ ๐’ˆ ๐’™ ๐’ˆ ๐’ˆ ๐’™ ๐’‡ ๐’‡(๐’ˆ ๐’™ ) ๐’ˆ ๐’™ ๐’Ž๐’–๐’”๐’• ๐’ƒ๐’† ๐’Š๐’ ๐’•๐’‰๐’† ๐’…๐’๐’Ž๐’‚๐’Š๐’ ๐’๐’‡ ๐’‡

17 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. a. ๐’‡ ๐’™ =๐Ÿ๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ =๐’™+๐Ÿ ๐’‡โˆ˜๐’ˆ ๐’™ =? ๐‘ซ ๐’‡โˆ˜๐’ˆ =?

18 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. a. ๐’‡ ๐’™ =๐Ÿ๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ =๐’™+๐Ÿ ๐’‡โˆ˜๐’ˆ ๐’™ =? ๐‘ซ ๐’‡โˆ˜๐’ˆ =? ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐’™ =๐Ÿ ๐’ˆ ๐’™ โˆ’๐Ÿ‘ ๐’‡ ๐’ˆ ๐’™ =๐Ÿ ๐’™+๐Ÿ โˆ’๐Ÿ‘ ๐‘ซ ๐’‡โˆ˜๐’ˆ =(โˆ’โˆž,โˆž) ๐’‡ ๐’ˆ ๐’™ =๐Ÿ๐’™+๐Ÿโˆ’๐Ÿ‘ ๐’‡ ๐’ˆ ๐’™ =๐Ÿ๐’™โˆ’๐Ÿ

19 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. b. ๐’‡ ๐’™ =๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ ๐’ˆโˆ˜๐’‡ ๐’™ =? ๐‘ซ ๐’ˆโˆ˜๐’‡ =?

20 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. b. ๐’‡ ๐’™ =๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ = ๐’™ ๐Ÿ +๐Ÿ ๐’ˆโˆ˜๐’‡ ๐’™ =? ๐‘ซ ๐’ˆโˆ˜๐’‡ =? ๐’ˆโˆ˜๐’‡ ๐’™ =๐’ˆ ๐’‡ ๐’™ ๐’ˆ ๐’‡ ๐’™ = ๐’‡ ๐’™ ๐Ÿ +๐Ÿ ๐‘ซ ๐’ˆโˆ˜๐’‡ =(โˆ’โˆž,โˆž) ๐’ˆ ๐’‡ ๐’™ = ๐’™โˆ’๐Ÿ‘ ๐Ÿ +๐Ÿ ๐’ˆ ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ”๐’™+๐Ÿ—+๐Ÿ ๐’ˆ ๐’‡ ๐’™ = ๐’™ ๐Ÿ โˆ’๐Ÿ”๐’™+๐Ÿ๐ŸŽ

21 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ c. ๐’‡โˆ˜๐’ˆ ๐’™ =? ๐‘ซ ๐’‡โˆ˜๐’ˆ =?

22 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ c. ๐’‡โˆ˜๐’ˆ ๐’™ =? ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐’™ = ๐Ÿ ๐’ˆ ๐’™ โˆ’๐Ÿ‘ ๐Ÿ ๐’™ โ‰ ๐ŸŽ ๐’™โ‰ ๐ŸŽ ๐’‡ ๐’ˆ ๐’™ = ๐Ÿ ๐Ÿ ๐’™ โˆ’๐Ÿ‘ ๐Ÿ ๐’™ โˆ’๐Ÿ‘โ‰ ๐ŸŽ ๐’™โ‰  ๐Ÿ ๐Ÿ‘ ๐’‡ ๐’ˆ ๐’™ = ๐Ÿ๐’™ ๐Ÿโˆ’๐Ÿ‘๐’™

23 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™โˆ’๐Ÿ‘ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ c. ๐‘ซ ๐’‡โˆ˜๐’ˆ =? ๐‘ซ ๐’ˆ =(โˆ’โˆž,๐ŸŽ)โˆช(๐ŸŽ,โˆž) ๐‘ซ ๐’‡โˆ˜๐’ˆ =(โˆ’โˆž,๐ŸŽ)โˆช(๐ŸŽ, ๐Ÿ ๐Ÿ‘ )โˆช( ๐Ÿ ๐Ÿ‘ ,โˆž)

24 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ d. ๐’ˆโˆ˜๐’‡ ๐’™ =? ๐‘ซ ๐’ˆโˆ˜๐’‡ =?

25 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ d. ๐’ˆโˆ˜๐’‡ ๐’™ =? ๐’ˆโˆ˜๐’‡ ๐’™ =๐’ˆ ๐’‡ ๐’™ ๐’ˆ ๐’‡ ๐’™ = ๐Ÿ ๐’‡ ๐’™ ๐Ÿ ๐’™ โ‰ ๐ŸŽ ๐’™โ‰ ๐ŸŽ ๐’ˆ ๐’‡ ๐’™ = ๐Ÿ ๐Ÿ ๐’™ ๐’ˆ ๐’‡ ๐’™ = ๐’™ ๐Ÿ

26 Function Operations and Composition of Functions
Sample Problem 2: Find each composite function. Determine the domain of each composite function. ๐’‡ ๐’™ = ๐Ÿ ๐’™ ๐’ˆ ๐’™ = ๐Ÿ ๐’™ d. ๐‘ซ ๐’ˆโˆ˜๐’‡ =? ๐‘ซ ๐’ˆ =(โˆ’โˆž,๐ŸŽ)โˆช(๐ŸŽ,โˆž) ๐‘ซ ๐’ˆโˆ˜๐’‡ =(โˆ’โˆž,๐ŸŽ)โˆช(๐ŸŽ,โˆž)

27 Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function. a. ๐’‡ ๐’™ = ๐’™ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ ๐’‡โˆ˜๐’ˆ ๐Ÿ” =?

28 Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function. a. ๐’‡ ๐’™ = ๐’™ ๐’ˆ ๐’™ =๐’™โˆ’๐Ÿ ๐’‡โˆ˜๐’ˆ ๐Ÿ” =? ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐Ÿ” = ๐Ÿ”โˆ’๐Ÿ ๐’‡ ๐’ˆ ๐’™ = ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐Ÿ” = ๐Ÿ’ ๐’‡ ๐’ˆ ๐’™ = ๐’™โˆ’๐Ÿ ๐’‡ ๐’ˆ ๐Ÿ” =๐Ÿ

29 Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function. ๐’‡ ๐’™ =๐Ÿ”๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ = ๐’™+๐Ÿ‘ ๐Ÿ ๐’ˆโˆ˜๐’‡ ๐Ÿ =? b.

30 Function Operations and Composition of Functions
Sample Problem 3: : Find and then evaluate each composite function. ๐’‡ ๐’™ =๐Ÿ”๐’™โˆ’๐Ÿ ๐’ˆ ๐’™ = ๐’™+๐Ÿ‘ ๐Ÿ ๐’ˆโˆ˜๐’‡ ๐Ÿ =? b. ๐’ˆโˆ˜๐’‡ ๐’™ =๐’ˆ ๐’‡ ๐’™ ๐’ˆ ๐’‡ ๐’™ = ๐’‡ ๐’™ +๐Ÿ‘ ๐Ÿ ๐’ˆ ๐’‡ ๐Ÿ =๐Ÿ‘โˆ—๐Ÿ+๐Ÿ ๐’ˆ ๐’‡ ๐’™ = (๐Ÿ”๐’™โˆ’๐Ÿ) +๐Ÿ‘ ๐Ÿ ๐’ˆ ๐’‡ ๐Ÿ =๐Ÿ• ๐’ˆ ๐’‡ ๐’™ = ๐Ÿ”๐’™+๐Ÿ ๐Ÿ = ๐Ÿ(๐Ÿ‘๐’™+๐Ÿ) ๐Ÿ ๐’ˆ ๐’‡ ๐’™ =๐Ÿ‘๐’™+๐Ÿ

31 Function Operations and Composition of Functions
Decomposition of Composite Functions When you form a composite function, you โ€œcomposeโ€ two functions to form a new function. It is also possible to reverse this process. You can โ€œdecomposeโ€ a given function and express it as a composition of two functions. Although there is more than one way to do this, there is often a โ€œnaturalโ€ selection that comes to mind first.

32 Function Operations and Composition of Functions
Sample Problem 4: Express ๐’‰ ๐’™ as a composition of two functions ๐’‡ and ๐’ˆ ๐’‡โˆ˜๐’ˆ ๐’™ . ๐’‰ ๐’™ = ๐’™ ๐Ÿ‘ โˆ’๐Ÿ‘๐’™ ๐Ÿ a.

33 Function Operations and Composition of Functions
Sample Problem 4: Express ๐’‰ ๐’™ as a composition of two functions ๐’‡ and ๐’ˆ ๐’‡โˆ˜๐’ˆ ๐’™ . ๐’‰ ๐’™ = ๐’™ ๐Ÿ‘ โˆ’๐Ÿ‘๐’™ ๐Ÿ a. ๐’‰ ๐’™ = ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐’™ = ๐’ˆ ๐’™ ๐Ÿ = ๐’™ ๐Ÿ‘ โˆ’๐Ÿ‘๐’™ ๐Ÿ ๐’‡ ๐’™ = ๐’™ ๐Ÿ ๐’ˆ ๐’™ = ๐’™ ๐Ÿ‘ โˆ’๐Ÿ‘๐’™

34 Function Operations and Composition of Functions
Sample Problem 4: Express ๐’‰ ๐’™ as a composition of two functions ๐’‡ and ๐’ˆ ๐’‡โˆ˜๐’ˆ ๐’™ . ๐’‰ ๐’™ = ๐Ÿ‘ ๐Ÿ‘๐’™โˆ’๐Ÿ“ b.

35 Function Operations and Composition of Functions
Sample Problem 4: Express ๐’‰ ๐’™ as a composition of two functions ๐’‡ and ๐’ˆ ๐’‡โˆ˜๐’ˆ ๐’™ . ๐’‰ ๐’™ = ๐Ÿ‘ ๐Ÿ‘๐’™โˆ’๐Ÿ“ b. ๐’‰ ๐’™ = ๐’‡โˆ˜๐’ˆ ๐’™ =๐’‡ ๐’ˆ ๐’™ ๐’‡ ๐’ˆ ๐’™ = ๐Ÿ‘ ๐’ˆ ๐’™ โˆ’๐Ÿ“ = ๐Ÿ‘ ๐Ÿ‘๐’™โˆ’๐Ÿ“ ๐’‡ ๐’™ = ๐Ÿ‘ ๐’™โˆ’๐Ÿ“ ๐’ˆ ๐’™ =๐Ÿ‘๐’™


Download ppt "Function Operations and Composition of Functions Unit 1 Lesson 6"

Similar presentations


Ads by Google