Presentation is loading. Please wait.

Presentation is loading. Please wait.

Similar presentations


Presentation on theme: "Real Zeros of Polynomial Functions"โ€” Presentation transcript:

1 Real Zeros of Polynomial Functions
Section 2.4

2 FF โ†’ ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ)
Terms Divisor: ๐‘‘(๐‘ฅ) Quotient: ๐‘ž(๐‘ฅ) Remainder: ๐‘Ÿ(๐‘ฅ) Dividend: ๐‘“(๐‘ฅ) Dividend= Divisor Quotient +Remainder PFโ†’๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ =๐‘“(๐‘ฅ) FF โ†’ ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ)

3 Long Division Use long division to find 3587 divided by 32. 3587รท32
112 โˆ’ 32____ 387 โˆ’ ___ 67 โˆ’_ _ 3 ๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ =๐‘“(๐‘ฅ)

4 Division Algorithm for Polynomials
Let ๐‘“(๐‘ฅ) and ๐‘‘(๐‘ฅ) be polynomials with the degree of ๐‘“ greater than or equal to the degree of ๐‘‘, and ๐‘‘(๐‘ฅ)โ‰ 0. Then, there are unique polynomials q(x) and r(x), called the quotient and remainder, such that ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ(๐‘ฅ) where either ๐‘Ÿ(๐‘ฅ)=0 or the degree of ๐‘Ÿ is less than the degree of ๐‘‘.

5 Theorems Remainder Theorem Factor Theorem If a polynomial ๐‘“(๐‘ฅ) is divided by ๐‘ฅโˆ’๐‘˜, then the remainder is ๐‘Ÿ=๐‘“(๐‘˜). A polynomial function ๐‘“(๐‘ฅ) has a factor ๐‘ฅโˆ’๐‘˜ if and only if ๐‘“(๐‘˜)=0.

6 Long Division with Polynomials Divide ๐‘“(๐‘ฅ) by ๐‘‘(๐‘ฅ) and write a summary statement in polynomial form.
๐‘“ ๐‘ฅ = ๐‘ฅ 3 โˆ’1; ๐‘‘ ๐‘ฅ =๐‘ฅโˆ’1 ๐‘ฅ 2 +๐‘ฅ+1 ๐‘ฅโˆ’1 ๐‘ฅ 3 +0 ๐‘ฅ 2 +0๐‘ฅโˆ’1 โˆ’ ( ๐‘ฅ 3 โˆ’ ๐‘ฅ 2 ) 0 + ๐‘ฅ 2 + 0๐‘ฅ โˆ’ ( ๐‘ฅ 2 โˆ’ ๐‘ฅ) 0 + ๐‘ฅ โˆ’ 1 โˆ’ ๐‘ฅ โˆ’ 1 0 Summary Statements: PF: ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ ๐‘ฅ 3 โˆ’1 =(๐‘ฅโˆ’1)โˆ™( ๐‘ฅ 2 +๐‘ฅ+1)+0 FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ) ๐‘ฅ 3 โˆ’1 ๐‘ฅโˆ’1 =( ๐‘ฅ 2 +๐‘ฅ+1)+ 0 ๐‘ฅโˆ’1

7 Theorems Remainder Theorem Factor Theorem
If a polynomial ๐‘“(๐‘ฅ) is divided by ๐‘ฅโˆ’๐‘˜, then the remainder is ๐‘Ÿ=๐‘“(๐‘˜). From previous example: ๐‘Ÿ=๐‘“ 1 = โˆ’1=0 A polynomial function ๐‘“(๐‘ฅ) has a factor ๐‘ฅโˆ’๐‘˜ if and only if ๐‘“(๐‘˜)=0. From the previous example, we know that ๐‘“(๐‘˜)=0. Thus, ๐‘ฅโˆ’1 is a factor.

8 Long Division with Polynomials Divide ๐‘“(๐‘ฅ) by ๐‘‘(๐‘ฅ) and write a summary statement in polynomial form.
๐‘“ ๐‘ฅ = ๐‘ฅ 4 โˆ’3 ๐‘ฅ 3 +6 ๐‘ฅ 2 โˆ’3๐‘ฅ+5; ๐‘‘ ๐‘ฅ = ๐‘ฅ 2 +1 ๐‘ฅ 2 โˆ’3๐‘ฅ+5 ๐‘ฅ 2 +0๐‘ฅ+1 ๐‘ฅ 4 โˆ’3 ๐‘ฅ 3 +6 ๐‘ฅ 2 โˆ’3๐‘ฅ+5 โˆ’ ( ๐‘ฅ 4 +0 ๐‘ฅ 3 + ๐‘ฅ 2 ) 0 โˆ’3 ๐‘ฅ 3 +5 ๐‘ฅ 2 โˆ’3๐‘ฅ โˆ’ โˆ’3 ๐‘ฅ 3 +0 ๐‘ฅ 2 โˆ’3๐‘ฅ ๐‘ฅ โˆ’ ๐‘ฅ Summary Statements: PF ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ ๐‘ฅ 4 โˆ’3 ๐‘ฅ 3 +6 ๐‘ฅ 2 โˆ’3๐‘ฅ+5=( ๐‘ฅ 2 +1)โˆ™( ๐‘ฅ 2 โˆ’3๐‘ฅ+5)+0 Summary Statement: FF ๐‘ฅ 4 โˆ’3 ๐‘ฅ 3 +6 ๐‘ฅ 2 โˆ’3๐‘ฅ+5 ๐‘ฅ 2 +1 = ๐‘ฅ 2 โˆ’3๐‘ฅ ๐‘ฅ 2 +1

9 Long Division with Polynomials Divide ๐‘“(๐‘ฅ) by ๐‘‘(๐‘ฅ) and write a summary statement in polynomial form.
๐‘“ ๐‘ฅ = ๐‘ฅ 3 +4 ๐‘ฅ 2 +7๐‘ฅโˆ’9; ๐‘‘ ๐‘ฅ =๐‘ฅ+3 ๐‘ฅ 2 +๐‘ฅ+4 ๐‘ฅ+3 ๐‘ฅ 3 +4 ๐‘ฅ 2 +7๐‘ฅโˆ’9 โˆ’ ( ๐‘ฅ 3 +3 ๐‘ฅ 2 ) 0 + ๐‘ฅ 2 +7๐‘ฅ โˆ’ ๐‘ฅ 2 +3๐‘ฅ 0 +4๐‘ฅโˆ’9 โˆ’ ๐‘ฅ+12 โˆ’21 Summary Statement: FF ๐‘ฅ 3 +4 ๐‘ฅ 2 +7๐‘ฅโˆ’9 ๐‘ฅ+3 = ๐‘ฅ 2 +๐‘ฅ+4+ โˆ’21 ๐‘ฅ+3 Summary Statements: PF ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ ๐‘ฅ 3 +4 ๐‘ฅ 2 +7๐‘ฅโˆ’9=(๐‘ฅ+3)โˆ™( ๐‘ฅ 2 +๐‘ฅ+4)+(โˆ’21)

10 Theorems Remainder Theorem Factor Theorem
If a polynomial ๐‘“(๐‘ฅ) is divided by ๐‘ฅโˆ’๐‘˜, then the remainder is ๐‘Ÿ=๐‘“(๐‘˜). From previous example: ๐‘Ÿ=๐‘“ โˆ’3 (โˆ’3) 3 +4 (โˆ’3) 2 +7 โˆ’3 โˆ’9 โˆ’ โˆ’21โˆ’9 โˆ’27+36โˆ’21โˆ’9 ๐‘“ โˆ’3 =โˆ’21 A polynomial function ๐‘“(๐‘ฅ) has a factor ๐‘ฅโˆ’๐‘˜ if and only if ๐‘“(๐‘˜)=0. From the previous example, we know that: ๐’‡ ๐’Œ =โˆ’๐Ÿ๐Ÿ. Thus, ๐‘ฅ+3 is not a factor.

11 Factor Theorem Definition: ๐‘“(๐‘˜)=0.
Use the factor theorem to determine whether the first polynomial is a factor of the second polynomial. Example: ๐‘ฅ+1; 2 ๐‘ฅ 10 โˆ’ ๐‘ฅ 9 + ๐‘ฅ 8 + ๐‘ฅ 7 +2 ๐‘ฅ 6 โˆ’3 ๐‘“ ๐‘˜ =๐‘“ 1 ๐‘“ 1 = โˆ’ โˆ’3 ๐‘“ 1 =2โˆ’ โˆ’3 ๐‘“(1)=2 Factor Theorem Definition: ๐‘“(๐‘˜)=0. Thus, ๐‘ฅ+1 is not a polynomial factor of 2 ๐‘ฅ 10 โˆ’ ๐‘ฅ 9 + ๐‘ฅ 8 + ๐‘ฅ 7 +2 ๐‘ฅ 6 โˆ’3.

12 Various Ways to say the Same Thing
For a polynomial function ๐‘“ and a real number ๐‘˜, the following statements are equivalent: ๐‘ฅ=๐‘˜ is a solution (or root) of the equation ๐‘“(๐‘ฅ)=0. ๐‘˜ is a zero of the function ๐‘“. ๐‘˜ is an x-intercept of the graph of ๐‘ฆ=๐‘“(๐‘ฅ). ๐‘ฅโˆ’๐‘˜ is a factor of ๐‘“(๐‘ฅ).

13 Synthetic Division Essentially a short-cut method for the division of a polynomial by a linear divisor of ๐‘ฅโˆ’๐‘˜.

14 Synthetic Division ๐‘˜ Steps: Set ๐‘ฅโˆ’๐‘˜=0. Solve for ๐‘ฅ.
Put the value in the box: Put coefficients in first row. Bring only 1st constant down to the bottom. Multiply and add. Write new equation with degree ๐‘›โˆ’1. ๐‘˜

15 Synthetic Division: Example 1
Divide 2 ๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’12 by ๐‘ฅโˆ’3. Steps 1-2: ๐‘ฅโˆ’3=0โ†’๐‘ฅ=3 Steps 3-5: 3 2 โˆ’3 โˆ’5 โˆ’12 + โ†“

16 Synthetic Division: Example 1
Divide 2 ๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’12 by ๐‘ฅโˆ’3. Steps 1-2: ๐‘ฅโˆ’3=0โ†’๐‘ฅ=3 Steps 3-5: 2 ๐‘ฅ 2 +3๐‘ฅ+4 3 2 โˆ’3 โˆ’5 โˆ’12 โ†“ 6 9 12 4 3ร—2 = = = 3ร—3 3ร—4

17 FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ)
Summary Statements PF: ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ 2๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’12 = ๐‘ฅโˆ’3 โˆ™ 2๐‘ฅ 2 +3๐‘ฅ+4 +0 FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ) 2๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’12 ๐‘ฅโˆ’3 = 2๐‘ฅ 2 +3๐‘ฅ+4+ 0 ๐‘ฅโˆ’3

18 Synthetic Division: Example 2
Divide ๐‘ฅ 4 โˆ’8 ๐‘ฅ 3 +11๐‘ฅโˆ’6 by ๐‘ฅ+3. โˆ’3 1 โˆ’8 11 โˆ’6 + โ†“ 33 โˆ’99 264 โˆ’11 โˆ’88 258 ๐‘ฅ 3 โˆ’11 ๐‘ฅ 2 +33๐‘ฅโˆ’88 PF: ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ ๐‘ฅ 4 โˆ’8 ๐‘ฅ 3 +11๐‘ฅโˆ’6 = ๐‘ฅ+3 โˆ™ ๐‘ฅ 3 โˆ’11 ๐‘ฅ 2 +33๐‘ฅโˆ’ FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ) ๐‘ฅ 4 โˆ’8 ๐‘ฅ 3 +11๐‘ฅโˆ’6 ๐‘ฅ+3 =( ๐‘ฅ 3 โˆ’11 ๐‘ฅ 2 +33๐‘ฅโˆ’88)+ 258 ๐‘ฅ+3

19 Synthetic Division: Example 3
Divide 5๐‘ฅ 4 โˆ’3๐‘ฅ+1 by 4โˆ’๐‘ฅ. 4 โˆ’5 3 โˆ’1 + โ†“ โˆ’20 โˆ’80 โˆ’320 โˆ’1268 โˆ’317 โˆ’1269 โˆ’5๐‘ฅ 3 โˆ’20 ๐‘ฅ 2 โˆ’80๐‘ฅโˆ’317โˆ’ 1269 ๐‘ฅโˆ’4

20 FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ)
Summary Statements PF: ๐‘“ ๐‘ฅ =๐‘‘ ๐‘ฅ โˆ™๐‘ž ๐‘ฅ +๐‘Ÿ ๐‘ฅ 5๐‘ฅ 4 โˆ’3๐‘ฅ+1 = 4โˆ’๐‘ฅ โˆ™ โˆ’5 ๐‘ฅ 3 โˆ’20 ๐‘ฅ 2 โˆ’80๐‘ฅโˆ’317 +(โˆ’1269) FF: ๐‘“(๐‘ฅ) ๐‘‘(๐‘ฅ) =๐‘ž ๐‘ฅ + ๐‘Ÿ(๐‘ฅ) ๐‘‘(๐‘ฅ) 5๐‘ฅ 4 โˆ’3๐‘ฅ+1 4โˆ’๐‘ฅ = โˆ’5 ๐‘ฅ 3 โˆ’20๐‘ฅ 2 โˆ’80๐‘ฅโˆ’317+ โˆ’1269 4โˆ’๐‘ฅ

21 Division: Exit Slip Divide ๐‘ฅ 3 โˆ’5 ๐‘ฅ 2 +3๐‘ฅโˆ’2 by ๐‘ฅ+1.

22 Homework: Due 10/24 P. 196: #7-10, 13-16 and 37-42.

23 Rational Zero Theorem Ex: ๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 +1
Suppose ๐‘“ is a polynomial function of degree ๐‘›โ‰ฅ1 of the form ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘› ๐‘ฅ ๐‘› = ๐‘Ž ๐‘›โˆ’1 ๐‘ฅ ๐‘›โˆ’1 +โ€ฆ+ ๐‘Ž 0 . with every coefficient and ๐‘Ž 0 โ‰ 0. If ๐’™= ๐’‘ ๐’’ is a rational zero of ๐‘“, where ๐‘ and ๐‘ž have no common integer factors other than 1, then ๐‘ is an integer factor of the constant coefficient ๐‘Ž 0 . ๐‘ž is an integer factor of the leading coefficient ๐‘Ž ๐‘› . Ex: ๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 +1

24 Using the Theorem Examples
๐‘ฅ 3 โˆ’3 ๐‘ฅ 2 +1 ๐‘ ๐‘ž = 1,โˆ’1 1, โˆ’1 = 1 1 , โˆ’1 1 , 1 โˆ’1 =1,โˆ’1 3 ๐‘ฅ 3 +4 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’2 ๐‘(๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ โˆ’2) ๐‘ž(๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ 3) = 1,โˆ’1, 2,โˆ’2 1, 3 =1,โˆ’1,2,โˆ’2, 1 3 , โˆ’ 1 3 , 2 3 ,โˆ’ 2 3

25 Thus, 1 is a zero. What are the others?
Finding Zeros: 3 ๐‘ฅ 3 +4 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’2 Check if 1 is a zero using synthetic division. 1 3 4 โˆ’5 โˆ’2 + โ†“ 7 2 3 ๐‘ฅ 2 +7๐‘ฅ+2 Thus, 1 is a zero. What are the others?

26 Finding Zeros 3 ๐‘ฅ 3 +4 ๐‘ฅ 2 โˆ’5๐‘ฅโˆ’2=0 ๐‘ฅโˆ’1 3 ๐‘ฅ 2 +7๐‘ฅ+2 =0 ๐‘ฅโˆ’1 3๐‘ฅ+1 ๐‘ฅ+2 =0 ๐‘ฅโˆ’1=0 3๐‘ฅ+1=0 ๐‘ฅ+2=0 ๐‘ฅ=1 ๐‘ฅ=โˆ’ 1 3 ๐‘ฅ=โˆ’2 Rational

27 Applying the Theorem 2๐‘ฅ 4 โˆ’7 ๐‘ฅ 3 โˆ’8 ๐‘ฅ 2 +14๐‘ฅ+8
๐‘(๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ 8) ๐‘ž(๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘œ๐‘“ 2) = ยฑ1,ยฑ2,ยฑ4,ยฑ8 ยฑ1,ยฑ2 =ยฑ1,ยฑ2,ยฑ4,ยฑ8,ยฑ 1 2

28 Finding Zeros: 2๐‘ฅ 4 โˆ’7 ๐‘ฅ 3 โˆ’8 ๐‘ฅ 2 +14๐‘ฅ+8
Check if 4 is a zero using synthetic division. 4 2 โˆ’7 โˆ’8 14 8 + โ†“ โˆ’16 1 โˆ’4 โˆ’2 ๐‘ฅโˆ’4 (2 ๐‘ฅ 3 + ๐‘ฅ 2 โˆ’4๐‘ฅโˆ’2) Thus, 4 is a zero. What are the others?

29 Finding Zeros: 2๐‘ฅ 4 โˆ’7 ๐‘ฅ 3 โˆ’8 ๐‘ฅ 2 +14๐‘ฅ+8
Check if โˆ’ 1 2 is a zero using synthetic division. โˆ’ 1 2 2 1 โˆ’4 โˆ’2 + โ†“ โˆ’1 ๐‘ฅโˆ’4 (๐‘ฅ+ 1 2 )(2 ๐‘ฅ 2 โˆ’4) Thus, โˆ’ 1 2 is a zero. What are the others?

30 Finding Zeros 2๐‘ฅ 4 โˆ’7 ๐‘ฅ 3 โˆ’8 ๐‘ฅ 2 +14๐‘ฅ+8=0 ๐‘ฅโˆ’4=0 ๐‘ฅ+ 1 2 =0 2 ๐‘ฅ 2 โˆ’4=0
๐‘ฅโˆ’4 ๐‘ฅ ๐‘ฅ 2 โˆ’4 =0 ๐‘ฅโˆ’4= ๐‘ฅ+ 1 2 = ๐‘ฅ 2 โˆ’4=0 ๐’™=๐Ÿ’ ๐’™=โˆ’ ๐Ÿ ๐Ÿ ๐‘ฅ 2 =2 ๐’™=ยฑ ๐Ÿ Irrational Rational


Download ppt "Real Zeros of Polynomial Functions"

Similar presentations


Ads by Google