Download presentation
Presentation is loading. Please wait.
Published byHomer Ball Modified over 7 years ago
1
II Hadron spectroscopy Paradigm change Mikhail Bashkanov
University of Edinburgh UK Nuclear Physics Summer School
2
Outline Naïve quark model N* puzzle Molecular states Exotics
Tetraquarks Pentaquarks Hexaquarks Hybrids Glueballs
3
Types of particles/resonances
Meson Baryon white color anticolor
4
Quarks fermions 3 colors Parity +1 Constituent quarks: 𝑀 𝑢/𝑑 ~300 𝑀𝑒𝑉
𝑀 𝑠 ~500 𝑀𝑒𝑉
5
The early days Baryons are 3 quark systems
Murray Gell Mann 1964 “A schematic model of baryons and mesons” Baryons are 3 quark systems Mesons are quark-antiquark systems
6
Excited states? Shell model
7
Nucleon excited states?
𝑃= −1 𝐿 P – parity L – angular momentum
8
Excited states - expectation
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 u d u 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
9
Excited states - expectation
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − u u d 1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 u d u 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
10
Excited states - expectation
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 u 𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − u d 1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − u u d 1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 u d u 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
11
Excited states - expectation
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 𝑵 ∗ ??? , 𝑱 𝑷 = 𝟏 𝟐 + 1𝑝 d u u 𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 1𝑝 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝟓𝟗𝟎 𝑴𝒆𝑽 1𝑠 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
12
Excited states - expectation
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 ???𝑵 ∗ 𝟗𝟒𝟎+𝟐∗𝟓𝟗𝟎=𝟐𝟏𝟐𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + 1𝑝 d u u 𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 1𝑝 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝟓𝟗𝟎 𝑴𝒆𝑽 1𝑠 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
13
Excited states - reality
𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 1𝑝 1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 1𝑝 d u 𝑵 ∗ 𝟏𝟒𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + u 1𝑠 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
14
Hyperons 𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 −
𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝑵 ∗ 𝟏𝟒𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + 1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 u d 𝚲 𝟏𝟏𝟏𝟔 , 𝑱 𝑷 = 𝟏 𝟐 + s 𝟏𝟕𝟔 𝑴𝒆𝑽 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
15
Excited hyperons? 1 𝑝 1/2 1𝑝 𝚲 ∗ 𝟏𝟕𝟎𝟎? , 𝑱 𝑷 = 𝟑 𝟐 − 𝟏𝟕𝟎𝟎=𝟏𝟓𝟐𝟎+𝟏𝟕𝟔 d
1 𝑠 1/2 1 𝑝 3/2 1 𝑝 1/2 1𝑝 𝚲 ∗ 𝟏𝟕𝟎𝟎? , 𝑱 𝑷 = 𝟑 𝟐 − 𝟏𝟕𝟎𝟎=𝟏𝟓𝟐𝟎+𝟏𝟕𝟔 d 𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − u s 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝑵 ∗ 𝟏𝟒𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + 𝚲 𝟏𝟏𝟏𝟔 , 𝑱 𝑷 = 𝟏 𝟐 + 𝟏𝟕𝟔 𝑴𝒆𝑽 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
16
Excited hyperons - reality
𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝚲 𝟏𝟓𝟐𝟎 , 𝑱 𝑷 = 𝟑 𝟐 − 𝑵 ∗ 𝟏𝟒𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + 𝚲 𝟏𝟒𝟎𝟓 , 𝑱 𝑷 = 𝟏 𝟐 − 𝚲 𝟏𝟏𝟏𝟔 , 𝑱 𝑷 = 𝟏 𝟐 + 𝟏𝟕𝟔 𝑴𝒆𝑽 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
17
Lattice QCD
18
Lattice QCD Models Nature 𝑀 3/ 2 − > 𝑀 1/ 2 −
𝑀 3/ 2 − > 𝑀 1/ 2 − 𝑀 3/ 2 − < 𝑀 1/ 2 − 𝑀 1/ 2 + ≫ 𝑀 1/ 2 − 𝑀 1/ 2 + < 𝑀 1/ 2 −
19
Missing states- extra states
20
Ideas? Di-quark degrees of freedom u d u d u u
21
Ideas? Di-quark degrees of freedom 𝑁 ∗ (1440) is a breathing mode u d
22
The Roper resonance: 𝑁 ∗ (1440)
Previous pion-nucleon resonances were discovered from observations on the qualitative behavior of experimental observables. The resonance suggested in this paper, however, is not associated with conspicuous features in the observables measured so far and has been inferred from a more quantitative analysis. L. D. Roper, Phys. Rev. Lett. 12 (1964) 340
23
The Roper resonance 1077 1371 1379 1440 𝑁𝜋 Δ𝜋 N𝜎 N ∗ Mass [MeV]
Old days: Mass=1440 MeV ( ) Width=350 MeV ( ) 𝑩𝒓 𝑵 ∗ →𝑵𝝅 =𝟔𝟎−𝟕𝟎% 𝑩𝒓 𝑵 ∗ →𝚫𝝅 =𝟐𝟎−𝟑𝟎% 𝑩𝒓 𝑵 ∗ →𝑵𝝈 =𝟓−𝟏𝟎% First radial excitation 1077 1371 1379 1440 𝑁𝜋 Δ𝜋 N𝜎 N ∗ Mass [MeV]
24
The Roper resonance 1077 1371 1379 1370 𝑁𝜋 Δ𝜋 N𝜎 N ∗ Mass [MeV] Now:
Width=190 MeV 𝑩𝒓 𝑵 ∗ →𝑵𝝅 =𝟒𝟎−𝟓𝟎% 𝑩𝒓 𝑵 ∗ →𝚫𝝅 =𝟏𝟎−𝟐𝟎% 𝑩𝒓 𝑵 ∗ →𝑵𝝈 =𝟐𝟎−𝟑𝟎% 𝒈 𝑵 ∗ →𝑵𝝅 =𝟎.𝟐 𝒈 𝑵 ∗ →𝑵𝝈 =𝟐.𝟓 𝑵𝝈 molecule 1077 1371 1379 1370 𝑁𝜋 Δ𝜋 N𝜎 N ∗ Mass [MeV]
25
Structure of the resonance. Transition form factor
𝒆 + 𝜸 ∗ 𝒆 − 𝑵 ∗ 𝑵
26
Structure of the resonance. Transition form factor
𝒆 + 𝜸 ∗ 𝒆 − 𝑵 ∗ 𝑵 𝒆 − JLab 𝜸 ∗ 𝒆 − 𝑵 𝑵 ∗
27
The Roper resonance = 𝑵𝝈 molecule
28
Excited hyperons - reality
𝑵 ∗ (𝟏𝟓𝟑𝟓) ,𝑱 𝑷 = 𝟏 𝟐 − 𝑵 ∗ (𝟏𝟓𝟐𝟎) ,𝑱 𝑷 = 𝟑 𝟐 − 𝚲 𝟏𝟓𝟐𝟎 , 𝑱 𝑷 = 𝟑 𝟐 − 𝑵 ∗ 𝟏𝟒𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 + 𝚲 𝟏𝟒𝟎𝟓 , 𝑱 𝑷 = 𝟏 𝟐 − 𝚲 𝟏𝟏𝟏𝟔 , 𝑱 𝑷 = 𝟏 𝟐 + 𝟏𝟕𝟔 𝑴𝒆𝑽 𝑵 𝟗𝟒𝟎 , 𝑱 𝑷 = 𝟏 𝟐 +
29
𝚲(𝟏𝟒𝟎𝟓) 𝑁 𝐾 −Σ𝜋 molecule 𝑀 𝑁+ 𝐾 =1432 𝑀𝑒𝑉 𝑀 Σ+𝜋 =1328 𝑀𝑒𝑉
30
𝚲 𝟏𝟒𝟎𝟓 from Lattice QCD
31
Molecular states. Mesons
𝜎 500 : 𝜋−𝜋 molecule 𝑓 0 / 𝑎 : 𝐾−𝐾 molecule 𝜅 700 : 𝐾−𝜋 molecule
32
Molecular states. Baryons
𝑁 ∗ : 𝑁−𝜎 molecule: |𝑢𝑢𝑑+ 𝑢 𝑑+ 𝑢 𝑑 Λ 1405 : 𝑁− 𝐾 molecule: | 𝑢𝑑𝑑+𝑠 𝑑 N ∗ : Σ−𝐾 molecule: | 𝑢𝑑𝑠+𝑑 𝑠
33
𝐍 ∗ (𝟏𝟓𝟑𝟓) N ∗ 1535 : Σ−𝐾 molecule: | 𝑢𝑑𝑠+𝑑 𝑠
𝑀 Σ − + 𝐾 + = =1691 𝑀𝑒𝑉 T. Inoue,* E. Oset, and M. J. Vicente Vacas, Phys. Rev. C 65, (2002)
34
Dynamically generated resonances
Λ 1405
35
Types of particles/resonances
Meson Baryon white color anticolor
36
Baryon-Baryon molecule Meson-Baryon molecule
Possible particles Tetraquark Meson-Meson molecule Hexaquark Baryon-Baryon molecule Pentaquark Meson-Baryon molecule
37
Multiquark vs Molecule
Tetraquark Meson-Meson molecule 𝑞 𝑞 𝑞 𝜋 𝑞 XYZ states in charm sector 𝑞 𝑞 𝑞 𝑞 𝑍 𝑐 𝑐 𝑢 𝑑 𝑔 𝑍 → 𝐽 𝜓 + 𝜋 + 𝑞 𝑞 𝑔
38
Exotics: Hybrids 𝒒 𝒒𝒈 𝐽=𝐿+𝑆 𝑃= −1 𝐿+1 𝐶= −1 𝐿+𝑆
𝑃= −1 𝐿+1 𝐶= −1 𝐿+𝑆 𝐽 𝑃𝐶 = 0 −− , 0 +− , 1 −+ , 2 +− - forbidden for 𝑞 𝑞 𝒒 𝒒𝒈
39
Exotics: Hybrid baryons
𝒒𝒒𝒒𝒈 Transition form factor measurements
40
Exotics: Hybrid baryons
Hadron Spectrum Collaboration
41
Dibaryons, B=2 systems
42
Deuteron L=0 n p n p L=2 4 fm 0.9 fm ≈5% 6q configuration ≈0.15%
43
Deuteron to Deltaron I(Jp) = 0(3+) I(Jp) = 0(1+) Threshold p n Δ Δ
2.2 MeV p n 80 MeV Δ Δ deuteron d*
44
Dibaryon hadronic decays
PRL 106 (2011) PLB 721 (2013) 229 WASA data 𝑑 𝜋 0 𝜋 0 𝑑 𝜋 + 𝜋 − pn d*(2380) 𝑝𝑛 𝑝𝑝 𝜋 − 𝜋 0 𝑝𝑛 𝜋 0 𝜋 0 𝑝𝑛 𝜋 + 𝜋 − PRL 112 (2014) PRC 90, (2014) d* PRC 88 (2013) PLB 743 (2015) 325 d* d*
45
Dibaryon in elastic scattering
p n + dibaryon background
46
Polarization is a key Effect of the resonance SAID New SAID solutions
47
Hexaquark vs molecule Transition form factor Charge distribution
* d*(2380) d Transition form factor Charge distribution Internal structure
48
Dibaryon in Skyrm model
David Foster, Nicholas S. Manton arXiv:
49
d*(2380) SU(3) multiplet Jp = 3+ * * 𝑑 ∗ (2380)
𝑀 𝑑 ∗ − 𝑀 Δ + 𝑀 Σ ∗ < 𝑀 𝑑 𝑠 ∗ ≤ 𝑀 Δ + 𝑀 Σ ∗ * 𝑑 𝑠 ∗ (2.53−2.60) * 𝑑 𝑠𝑠 ∗ (2.68−2.76) 𝑑 𝑠𝑠𝑠 ∗ (2.82−2.90)
50
Baryon Summary Table (PDG 2014)
52
Conclusion Precise experiments change our knowledge about well known resonances Transition form factors -> internal structure New exotic states Meson Molecules Tetraquarks Hybrids Meson-Baryon Molecules Pentaquarks Hybrid baryons Baryon-baryon molecules Hexaquarks … A lot of states still to be found and identified
53
NN SU(3) multiplet Jp = 1+ pn Deuteron +2.2 MeV ΛN -166 keV ΞN
ΞΣ
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.