Download presentation
Presentation is loading. Please wait.
Published byRaymond Little Modified over 7 years ago
1
◎K・P理論を用いた光吸収計算 ◎中間バンドを介入したキャリア再結合 ◎ 中間バンドに関するバンド理論とバンド計算
曽我部東馬@東大先端研 07/21, 2011
2
OUTLINE ( ,)) ● Intermediate band calculation ● BASICS:
K•P method and light absorption ^ ● Light absorption and carrier dynamics ( ,)) ● Intermediate band calculation
3
KP perturbation method
The muscling up scheme for understand optical dynamics in semiconductor Fermi’s golden rule Absorption coefficient The Schrödinger equation ●E-k dispersion ●En and density of states ●Ψ: Wavefunction Radiation transition lifetime Non Radiation transition lifetime Electron cooling: Bi-exciton recombination: KP perturbation method Lutinger-Kohn Hamiltonian Plane wave expansion
4
Schrödinge equation Bloch function Note: is not included
^ K・P perturbation method : Schrödinge equation Bloch function ^ ^ Note: is not included
5
Kane model Luttinger- kohn model
^ K・P : Kane model and Luttinger –Kohn model Kane model Group A Group B L-K parameter: Luttinger- kohn model S like P like Kane parameter P : K・P K・P K・P
6
Initial basis set: (electron eigen states) are given as:
^ K・P : Kane model Initial basis set: (electron eigen states) are given as: , ^ (R(r) part will be solved by using K P method) S like P like P like Hamiltonian used for calculation (SO effect included)
7
Explicit form of Hamiltonian
Kane model : Explicit form of Hamiltonian Block diagonalisation Kane parameter (predetermined: where: Spin orbit interaction (0.3~0.6eV): Det(H)=0 Eigenvalue Eigenvalue
8
CB band HH band LH band SO band K・P : Kane Model: Energy level (k=0)
^ K・P : Kane Model: Energy level (k=0) Wavefunction (k=0) CB band ● Eg ● HH band LH band Δ SO band ●
9
Following the Löwdin’s renormalization theorem and taking
K・P : Luttinger –Kohn model Hamiltonian: Initial basis set: Following the Löwdin’s renormalization theorem and taking the Kane’s solution at k=0 for valence bands, we write: Löwdin’s perturbation method: Wavefuction of B is included but not included in the calculation. No need to calculate because L-K parameter is used
10
Explicit form of Hamiltonian:
K・P : Luttinger –Kohn model Explicit form of Hamiltonian: L-K parameter (predetermined):
11
K・P : strain effect based on Luttinger –Kohn model (my work)
In1-xGaxAs on InP In_1-xGa_xAs x= E-Kx dispersion In_1-xGa_xAs x= E-Kz dispersion z z z Kx (Å-1 ) Kz(Å-1 )
12
K・P : Exercise: strain effect based on Luttinger –Kohn model
In_1-xGa_xAs x=0.4 (reference) In_1-xGa_xAs x=0.3 (my work) PRB, Kx (Å-1 ) Kz(Å-1 )
13
K・P : Constant energy contour
Unstrained In1-xGaxAs on InP (x=0.468) Kx (π/a) Kz (π/a) HH LH
14
Total transition rate per unit volume
Transition rate using Fermi’s Golden Rule Absortption <b| <a| Emission Absorption Emission Total transition rate per unit volume Net upward transition rate per unit volume
15
●H’(r) ●Wavefunction ●Energy level ① ④ ⑤ ② ③
Calculate net transition rate ① ④ ⑤ ② ●H’(r) ●Wavefunction ●Energy level ③
16
Light Origin of H’(r): electron and photon interaction
② Light (Is not used for calculating transition rate) Atom Scale of electric field distribution is too big than atom size Dipole approximation
17
TE mode: TM mode: CB HH LH SO
Momentum matrix elements of bulk and quantum well/dot semiconductor ③ CB ● Eg HH ● TE mode: LH Δ TM mode: SO ●
18
Kane parameter (from experiment)
Momentum matrix elements of bulk and quantum well/dot semiconductor ③ Kane parameter (from experiment) TE MODE CB ● Eg Px Py HH ● LH TM MODE Px Py Pz
19
Delta function: ④ =6 =10 =20 =30
20
= No. Photons absorbed per unit volume per second
Absorption coefficient: No. Photons injected per unit area per second No. Photons absorbed per unit volume per second Absorption coefficient = Momentum transfer matrix
21
𝟐 𝑽 term and Joint (reduced ) density of states (JDOS): (1) ① 3-D density of states Conduction band Density of states for electrons Valence band Density of states for hole
22
CB VB term and Joint (reduced ) density of states (JDOS): (2) Ef
𝟐 𝑽 term and Joint (reduced ) density of states (JDOS): (2) CB Ef ● reduced electron mass : mr with Eg ● Ei VB Reduced (joint) density of states Under thermal equilibrium Non-equilibrium Carrier concentration difference
23
CB VB Absorption coefficient under thermal equilibrium: BulK material
● Eg ● VB
24
Light absorption and carrier dynamics
( ,tby tomic Stanko)
25
Truncated pyramid Quantum dot InAs (QD)/GaAs
Calculation model: Truncated pyramid Quantum dot InAs (QD)/GaAs QD superlattice model ● ● ● d=2~10nm h=2.5nm b=10nm K P plane wave method ●L-K hamiltonian ●Fourier transformation ● ● ●
26
Charge density contour and band dispersion
Quantum dot array Single Quantum do e0 h0 GaAs InAs e0 e2 e2 e1 e1 e0 e0
27
Due to shape anisotropy, QD is more TE polarized
Absorption : IB=>CB Band structure and Potential profile of InAs (QD)/GaAs Absorption spectrum (cm-1) Shape anisotropy and polarization e0e1 e0e2 ---TE mode ---TM mode ③ ② ① Barrier Continuum Bragg type confinment miniband e1 ,e2 band : p like e2 e1 TE ③ Py ① ② Px e0 TM Pz Due to shape anisotropy, QD is more TE polarized ● ● ● ● IB=> CB transition
28
Absorption spectrum (cm-1)
Absorption : VB=>IB Band structure and Potential profile of InAs (QD)/GaAs Absorption spectrum (cm-1) Polarization dependence 5x104 e1 e0 e2 Barrier Continuum ① ② ③ h0 Due to highly biaxial compressive strain and the hydrostatic component makes h0 state heavy hole character. HH Px Py TE ● ● ● ● TM VB=> IB transition
29
Sommerfeld factor get extremely large at band edge
VB=>CB transition and many body effect VB=> CB transition E (eV) Band edge Sommerfeld factor (absorption enhance effect) e1 e0 e2 Barrier Continuum ① h0 Sommerfeld factor get extremely large at band edge ● Many body effect (Coublum interaction) is not important because exciton is almost ionized , but it becomes pronounced when at low temperature.
30
=52 Radiative transition times (radiative recombination)
● Life time depends on energy difference Single QD ns ns QD SL(Kz=0) ns ● Life time depends on moment um matrix e1,e2 =>e0 (intraband transition) =52 e0=>h0 (inter band transition) Single QD ns QD SL(Kz=0) ns
31
Single InAs QD InAs QD SL Auger recombination: electron cooling
Coulomb integral Single InAs QD InAs QD SL
32
Auger recombination: biexiciton recombination
Single QD Single QD QD SL QD SL Single QD QD SL
33
Electron phonon interaction: absorption and emission
e1-e0 Absorption Emission 36meV
34
Summary: ① Radiative recombination. CB=>IB
② Radiative recombination. IB=>VB ⑤ Auger electron cooling between CB=>IB ③ Phonon emission assisted CB=>IB ④ Phonon absorption assisted IB=>CB ⑥ Auger biexciton relaxation between IB=>VB
35
Appendix: Kronig-Penny Model
36
GaAs/AlxGa1-xAs quantum well superlattice band calculation:
Well width Barrier width Al 0.3 Ga 0.7 As Ga As Eg1 Eg2 ΔEc Ga As Ga As ΔEv 井戸幅(ドット直径) バリア層幅 Eg1 Eg2 ΔEC ΔEv 2nm-30nm 2nm-10nm eV 1.80 eV 0.25 eV 0.125 eV Calculation method: Transfer matrix method
37
Bound state & Continuum miniBand
井戸幅:10nm バリア層幅 4nm (eV) (eV) C8 C1 C7 C6 バリアポテンシャル(eV) B2 C5 C4 B1 C3 C2 C1 B0 Г Х Х Х Г Х
38
Bound state miniBandが一つだけ存在する条件:
井戸幅:5nm バリア層幅 4nm (eV) C7 (eV) C2 C6 C1 C5 バリアポテンシャル(eV) C4 Г Х B0 C3 C2 C1 Х Г Х
39
伝導帯Bound miniband の障壁幅/井戸幅依存性 :
バリア層幅 2nm バリア層幅 4nm バリア層幅 8nm バリア層幅 10nm (eV) B2 B2 B2 Г Х B2 Г Х B4 B6 B4 B4 B6 B4 B6 B6 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm B5 B5 B5 B5 B3 B3 B3 B3 B4 B4 B4 B4 B1 B1 B1 B2 B1 B2 B2 B2 B3 B3 B3 B3 B2 B2 B2 B2 B0 B1 B1 B1 B1 B0 B0 B0 B1 B1 B1 B1 B0 B0 B0 B0 B0 B0 B0 B0 Х Г Х Х Х Х Г Х
40
Light hole Bound miniband の障壁幅/井戸幅依存性 :
バリア層幅 2nm バリア層幅 4nm バリア層幅 8nm バリア層幅 10nm (eV) LH0 LH0 LH0 LH0 LH0 LH0 LH0 LH0 LH0 LH1 LH1 LH1 LH1 LH0 LH0 LH0 LH2 LH2 LH1 LH1 LH2 LH2 LH1 LH1 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm 井戸幅: 10nm, 20nm , 30nm LH2 LH2 LH3 LH3 LH3 LH2 LH2 LH3 LH4 LH1 LH1 LH4 LH4 LH4 LH1 LH1 LH3 LH3 LH3
41
伝導帯 miniband & 価電子帯 miniband:
バリア層幅:4nm 井戸幅: 4nm バリア層幅:4nm 井戸幅: 20nm (eV) (eV) B3 B2 B0 B1 B0 LH0 HH0 HH0 LH1 HH2 LH0 LH2 HH3 HH1 HH4 LH3
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.