Download presentation
Presentation is loading. Please wait.
1
Hans-Jürgen Wollersheim
Coulomb excitation Hans-Jürgen Wollersheim γ target excited projectile Beam Target HPGe θ
2
Hans-Jürgen Wollersheim
Coulomb excitation Hans-Jürgen Wollersheim Nuclear excitation by electromagnetic field acting between nuclei. observables: 1. scattering angle 2. intensity + 𝜗 𝑙𝑎𝑏 ⟹ 𝜃 𝑐𝑚 b projectile target + 𝑎∙𝑐𝑜𝑡 𝜃 𝑐𝑚 2 = 𝑑 𝜎 𝑅𝑢𝑡ℎ 𝑑 Ω 𝑐𝑚 = 𝑎 2 4 ∙ 𝑠𝑖𝑛 −4 𝜃 𝑐𝑚 2 ~10-22s 𝑑 𝜎 𝑖𝑛𝑒𝑙 𝑑 Ω 𝑐𝑚 = 𝒂 𝒊⟶𝒇 2 ∙ 𝑑 𝜎 𝑅𝑢𝑡ℎ 𝑑 Ω 𝑐𝑚 α-particle spectroscopy ϑlab 152Sm target Si-detector α-particles inelastic scattering: kinetic energy is transferred into nuclear excitation energy H.J. Wollersheim et al., Phys. Lett 48B (1974) 323
3
Coulomb excitation + + If Ii
Nuclear excitation by electromagnetic field acting between nuclei. observables: 1. scattering angle 2. intensity + 𝜗 𝑙𝑎𝑏 ⟹ 𝜃 𝑐𝑚 b projectile target + 𝑎∙𝑐𝑜𝑡 𝜃 𝑐𝑚 2 = 𝑑 𝜎 𝑅𝑢𝑡ℎ 𝑑 Ω 𝑐𝑚 = 𝑎 2 4 ∙ 𝑠𝑖𝑛 −4 𝜃 𝑐𝑚 2 ~10-22s 𝑑 𝜎 𝑖𝑛𝑒𝑙 𝑑 Ω 𝑐𝑚 = 𝒂 𝒊⟶𝒇 𝟐 ∙ 𝑑 𝜎 𝑅𝑢𝑡ℎ 𝑑 Ω 𝑐𝑚 lifetime ~ s If 1st order: Ii 𝟏 𝝉 ≅𝟏.𝟐𝟑∙ 𝟏𝟎 𝟏𝟑 ∙𝑩 𝑬𝟐; 𝑰 𝒇 → 𝑰 𝒊 ∙ 𝑬 𝜸 𝟓 𝒔 −𝟏 𝐵 𝐸2; 𝐼 𝑖 → 𝐼 𝑓 = 1 2 𝐼 𝑖 𝐼 𝑓 𝑀 𝐸2 𝐼 𝑖 2 The inelastic cross section is a direct measure of the E2 matrix elements 𝑑 𝜎 𝑖𝑛𝑒𝑙 𝑑 Ω 𝑐𝑚 H.J. Wollersheim et al., Phys. Lett 48B (1974) 323
4
Coulomb excitation Sommerfeld parameter:
wave particle Sommerfeld parameter: >> 1 requirement for a (semi-) classical treatment of equations of motion (hyperbolic trajectories ) 4He (Z=2) projectiles behave like waves quantummechanical analysis is needed
5
Classical Coulomb trajectories
impact parameter scattering angle Hyperbolic trajectory: ε = sin-1(θcm/2) eccentricity of orbit 𝑡= 𝑎 𝑣 ∞ 𝜖∙𝑠𝑖𝑛ℎ𝜔+𝜔 distance of closest approach: impact parameter: angular momentum : 𝐷=𝑎∙ 𝑠𝑖𝑛 −1 𝜃 𝑐𝑚 2 +1 𝑏=𝑎∙𝑐𝑜𝑡 𝜃 𝑐𝑚 2 ℓ= 𝑘 ∞ ∙𝑏=𝜂∙𝑐𝑜𝑡 𝜃 𝑐𝑚 2
6
Safe bombarding energy pure electromagnetic interaction
Nuclear interaction radius: CP, CT half-density radii Pure Coulomb excitation requires a much larger distance between the nuclei ”safe bombarding energy” requirement 𝑅 𝑖𝑛𝑡 ≅ 𝐶 𝑝 + 𝐶 𝑡 +3𝑓𝑚 𝑅 𝑖𝑛𝑡 = 𝐶 𝑝 + 𝐶 𝑡 +4.49− 𝐶 𝑝 + 𝐶 𝑡 6.35
7
Safe bombarding energy pure electromagnetic interaction
< 1% deviation from Coulomb excitation Dmin Rutherford scattering only if Dmin is large compared to nuclear radii + surfaces: Dmin > Cp + Ct + 5 fm CP, CT half-density radii choose adequate beam energy Elab (D > Dmin for all θcm)
8
Electric fields of multipoles
In general the electric potential due to an arbitrary charge distribution is 𝑈 𝑟 = 𝜌 𝑝 𝑟 ′ 𝑟 − 𝑟 ′ 𝑑𝜏′ expansion 1 𝑟−𝑟′ = ℓ=0 ∞ 𝑟′ ℓ 𝑟 ℓ+1 4𝜋 2ℓ+1 𝑚=−ℓ ℓ 𝑌 ℓ𝑚 𝜗,𝜑 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ ℓ=𝑚= 𝑌 00 𝜗,𝜑 = 𝑌 00 𝜗 ′ ,𝜑′ = 1 4𝜋 special case: electric monopole → 𝑟−𝑟′ = 1 𝑟
9
Electric fields of multipoles
In general the electric potential due to an arbitrary charge distribution is 𝑈 𝑟 = 𝜌 𝑝 𝑟 ′ 𝑟 𝑑𝜏′ homogenous charge distribution 𝜌 𝑝 𝑟′ = 3∙𝑍𝑒 4𝜋∙ 𝑅 0 3 𝑈 𝑟 = 3∙𝑍𝑒 4𝜋∙ 𝑅 𝑟 𝑟′ 2 𝑑 𝑟 ′ 𝑠𝑖𝑛 𝜗 ′ 𝑑 𝜗 ′ 𝑑𝜑′ special case: electric monopole 𝑈 𝑟 = 3∙𝑍𝑒 4𝜋∙ 𝑅 0 3 ∙ 1 𝑟 ∙ 𝑅 ∙4𝜋 = 𝒁𝒆 𝒓
10
Electric fields of multipoles
In general the electric potential due to an arbitrary charge distribution is 𝑈 𝑟 = 𝜌 𝑝 𝑟 ′ 𝑟 − 𝑟 ′ 𝑑𝜏′ 1 𝑟−𝑟′ = 1 𝑟 𝑓𝑜𝑟 𝑟>𝑟′ 1 𝑟′ 𝑓𝑜𝑟 𝑟<𝑟′ 𝑈 𝑟 =4𝜋∙ 3∙𝑍𝑒 4𝜋∙ 𝑅 0 3 ∙ 0 𝑟 1 𝑟 ∙ 𝑟′ 2 𝑑𝑟′ + 𝑟 𝑅 𝑟′ ∙ 𝑟′ 2 𝑑𝑟′ 𝑈 𝑟 = 3∙𝑍𝑒 𝑅 0 3 ∙ 𝑟 𝑅 − 𝑟 2 2 special case: electric monopole 𝑈 𝑟 = 𝑍𝑒 2 𝑅 0 ∙ 3− 𝑟 𝑅
11
Electric fields of multipoles
In general the electric potential due to an arbitrary charge distribution is 𝑈 𝑟 = 𝜌 𝑝 𝑟 ′ 𝑟 − 𝑟 ′ 𝑑𝜏′ expansion 1 𝑟−𝑟′ = ℓ=0 ∞ 𝑟′ ℓ 𝑟 ℓ+1 4𝜋 2ℓ+1 𝑚=−ℓ ℓ 𝑌 ℓ𝑚 𝜗,𝜑 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ multipole moments 𝑀 ∗ ℓ,𝑚 = 𝜌 𝑝 𝑟′ ∙ 𝑟′ ℓ ∙ 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ 𝑑𝜏′ 𝑀 ∗ ℓ=2,𝑚 = 3∙𝑍𝑒∙ 𝑅 𝜋 ∙ 𝛽 2 special case: electric quadrupole matrix element 𝐵 𝐸ℓ=2; 𝐼 𝑖 → 𝐼 𝑓 = 𝑀 𝑓 𝑚 𝐼 𝑓 𝑀 𝑓 𝐾 𝑓 𝑀 ℓ=2,𝑚 𝐼 𝑖 𝑀 𝑖 𝐾 𝑖 2 B(E2)-value:
12
Electric fields of multipoles
multipole moments 𝑀 ∗ ℓ,𝑚 = 𝜌 𝑝 𝑟′ ∙ 𝑟′ ℓ ∙ 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ 𝑑𝜏′ special case: electric quadrupole matrix element (ℓ = 2, m = 0) 𝜌 𝑝 𝑟′ = 3∙𝑍𝑒 4𝜋∙ 𝑅 0 3 𝑀 ∗ 2,0 = 3∙𝑍𝑒 4𝜋∙ 𝑅 𝑟′ 2 ∙ 𝑌 20 ∗ 𝜗 ′ , 𝜑 ′ ∙ 𝑟′ 2 𝑑 𝑟 ′ 𝑠𝑖𝑛 𝜗 ′ 𝑑 𝜗 ′ 𝑑𝜑′ 𝑀 ∗ 2,0 = 3∙𝑍𝑒 4𝜋∙ 𝑅 0 3 ∙ 𝑅 𝛽 2 𝑌 ∙ 𝑌 20 ∗ ∙𝑠𝑖𝑛 𝜗 ′ 𝑑 𝜗 ′ 𝑑𝜑′ 𝑅 𝜗 ′ ,𝜑′ = 𝑅 0 ∙ 1+ 𝛽 2 𝑌 20 𝜗 ′ ,𝜑′ 𝑀 ∗ 2,0 ≅ 3∙𝑍𝑒∙ 𝑅 𝜋 ∙ 𝛽 2 𝑌 20 ∙ 𝑌 20 ∗ ∙𝑑Ω′ 𝑀 ∗ 2,0 ≅ 3∙𝑍𝑒∙ 𝑅 𝜋 ∙ 𝛽 2
13
Electric fields of multipoles
In general the electric potential due to an arbitrary charge distribution is 𝑈 𝑟 = 𝜌 𝑝 𝑟 ′ 𝑟 − 𝑟 ′ 𝑑𝜏′ expansion 1 𝑟−𝑟′ = ℓ=0 ∞ 𝑟′ ℓ 𝑟 ℓ+1 4𝜋 2ℓ+1 𝑚=−ℓ ℓ 𝑌 ℓ𝑚 𝜗,𝜑 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ multipole moments 𝑀 ∗ ℓ,𝑚 = 𝜌 𝑝 𝑟′ ∙ 𝑟′ ℓ ∙ 𝑌 ℓ𝑚 ∗ 𝜗 ′ ,𝜑′ 𝑑𝜏′ 𝑈 𝑟 = 𝑚=−2 𝑚=2 4𝜋 5 ∙ 1 𝑟 3 ∙ 𝑌 ℓ=2,𝑚 𝜗,𝜑 ∙ 𝑀 ∗ ℓ=2,𝑚 special case: electric quadrupole potential
14
Monopole, dipole, quadrupole, ...
octopole 𝑈 𝑟 ∝ 1 𝑟 𝑈 𝑟 ∝ 1 𝑟 2 𝑈 𝑟 ∝ 1 𝑟 3 𝑈 𝑟 ∝ 1 𝑟 4
15
Kinematics 58Ni → 175 MeV Ψ: ϑ:
16
Coulomb excitation at IUAC
58Ni → 122Sn at 175 MeV Esafe = 202 MeV beam intensity = 0.5 pnA target thickness = 0.5 mg/cm2 → luminosity = 8·1027 s-1cm-2 cross section ~ 70 mb event rate = 560 s-1 γ-efficiency = 0.005 pγ-rate (Sn) = 3/s 112Sn target 58Ni beam Clover Ge detector R. Kumar et al., Phys. Rev. C81, (2010) M. Saxena et al., Phys. Rev. C90, (2014)
17
Coulomb excitation at IUAC
58Ni → 122Sn at 175 MeV 112Sn target 58Ni beam Clover Ge detector R. Kumar et al., Phys. Rev. C81, (2010) M. Saxena et al., Phys. Rev. C90, (2014)
18
Annular gas-filled parallel-plate avalanche counter (PPAC)
V0 ~ 500 V p = 5-10 Torr gap ~ 3 mm (anode-cathode) 122Sn 58Ni beam Δt ~ tanϑ i o i delay line Δtime → A. Jhingan detector laboratory at IUAC
19
Doppler shift correction
58Ni + 122Sn at 175 MeV delay line: inner – outer contact ≈ tanϑ φ-segmentation : 360, 720, 1080, etc 𝑡𝑎𝑛𝜗= 𝑡𝑎𝑛 45 0 −𝑡𝑎𝑛 𝑐ℎ 2 − 𝑐ℎ 1 ∙ 𝑐ℎ− 𝑐ℎ 1 +𝑡𝑎𝑛 15 0 58Ni projectile measured with PPAC (122Sn target excitation) index 1 ≡ projectile (58Ni) index 2 ≡ target nucleus (122Sn) 𝑣 𝑐𝑚 = ∙ 1+ 𝐴 2 𝐴 1 −1 𝐸 𝑙𝑎𝑏 𝐴 1 ( = ) 112Sn target 𝜃 𝑐𝑚 = 𝜗 1 +𝑎𝑟𝑐𝑠𝑖𝑛 𝐴 1 𝐴 2 𝑠𝑖𝑛 𝜗 1 𝜗 2 =0.5∙ − 𝜃 𝑐𝑚 𝑣 2 =2∙ 𝑣 𝑐𝑚 ∙𝑐𝑜𝑠 𝜗 2 𝑐𝑜𝑠 𝜗 𝛾2 =𝑐𝑜𝑠 𝜗 𝛾 ∙𝑐𝑜𝑠 𝜗 2 −𝑠𝑖𝑛 𝜗 𝛾 ∙𝑠𝑖𝑛 𝜗 2 ∙𝑐𝑜𝑠 𝜑 𝛾 − 𝜑 2 𝑐𝑜𝑠 𝜑 𝛾 − 𝜑 1 =𝑐𝑜𝑠 𝜑 𝛾 ∙𝑐𝑜𝑠 𝜑 1 +𝑠𝑖𝑛 𝜑 𝛾 ∙𝑠𝑖𝑛 𝜑 1 𝐸 𝛾0 𝐸 𝛾 = 1− 𝑣 2 ∙𝑐𝑜𝑠 𝜗 𝛾2 1− 𝑣 2 2 58Ni beam D. Schwalm et al. Nucl.Phys. A192 (1972), 449
20
Doppler shift correction
58Ni + 122Sn at 175 MeV 112Sn target 2+ 122Sn 2+ 58Ni 58Ni beam R. Kumar, A. IUAC
21
Experimental set-up TARGET CLOVER DETECTORS @ backward angles
forward angle
22
Particle-gamma coincidence spectroscopy
+ b projectile target + ~10-22s lifetime ~ s 2+ 1st order: 0+ Coulomb excitation: 𝝈 𝑬𝟐 𝟐 + 𝑏 =4.819∙ 1+ 𝐴 1 𝐴 2 −2 ∙ 𝐴 1 𝑍 2 2 ∙ 𝐸 𝑀𝑒𝑉 −∆ 𝐸′ 𝑀𝑒𝑉 ∙ 𝑩 𝑬𝟐, 𝟎 + → 𝟐 + 𝑒 2 𝑏 2 ∙ 𝑓 𝐸2 𝜉 𝜉= 𝑍 1 ∙𝑍 2 ∙ 𝐴 1 1/2 ∙∆ 𝐸′ 𝑀𝑒𝑉 ∙ 𝐸 𝑀𝑒𝑉 −0.5∙∆ 𝐸′ 𝑀𝑒𝑉 3/2 ∙ ∆𝐸′ 𝐸 2 +…
23
Particle-gamma coincidence spectroscopy
Coulomb excitation: 𝝈 𝑬𝟐 𝟐 + 𝑏 =4.819∙ 1+ 𝐴 1 𝐴 2 −2 ∙ 𝐴 1 𝑍 2 2 ∙ 𝐸 𝑀𝑒𝑉 −∆ 𝐸′ 𝑀𝑒𝑉 ∙ 𝑩 𝑬𝟐, 𝟎 + → 𝟐 + 𝑒 2 𝑏 2 ∙ 𝑓 𝐸2 𝜉 𝜉= 𝑍 1 ∙𝑍 2 ∙ 𝐴 1 1/2 ∙∆ 𝐸′ 𝑀𝑒𝑉 ∙ 𝐸 𝑀𝑒𝑉 −0.5∙∆ 𝐸′ 𝑀𝑒𝑉 3/2 ∙ ∆𝐸′ 𝐸 2 +… K. Alder et al., RMP 28 (56) 432
24
Particle-gamma coincidence spectroscopy
+ b projectile target + ~10-22s lifetime ~ s 2+ 1st order: 0+ Coulomb excitation: 𝝈 𝑬𝟐 𝟐 + 𝑏 =4.819∙ 1+ 𝐴 1 𝐴 2 −2 ∙ 𝐴 1 𝑍 2 2 ∙ 𝐸 𝑀𝑒𝑉 −∆ 𝐸′ 𝑀𝑒𝑉 ∙ 𝑩 𝑬𝟐, 𝟎 + → 𝟐 + 𝑒 2 𝑏 2 ∙ 𝑓 𝐸2 𝜉 Particle-γ coincidence spectroscopy: Yγ(Ii→If) → σE2(Ii) (indirect measurement) need to take into account branching ratios, particle-γ angular correlations, electron conversion
25
Particle-gamma angular correlation
112Sn 58Ni beam
26
Conversion electrons Energetics of CE-decay (i=K, L, M,….)
Ei = Ef + Ece,i + EBE,i γ- and CE-decays are independent; transition probability (λ ~ Intensity) λT = λγ + λCE = λγ + λK + λL + λM…… Conversion coefficient ai = λCE,i / λγ
27
Coulomb excitation results of semi-magic Sn isotopes
Z = 50 g7/2 d5/2 s1/2 d3/2 h11/2 single-particle transition: (Weisskopf estimate) 𝐵 𝐸2; 𝐼 𝑖 → 𝐼 𝑔𝑠 = −6 ∙ 𝐴 4/ 𝑒 2 𝑏 2 𝐵 𝐸2; 2 + → 0 + =14 𝑠𝑝𝑢 for 114Sn 𝐵 𝐸2; 0 + → 2 + = 𝑒 2 𝑏 for 114Sn 𝐵 𝐸2; 𝐼 𝑖 → 𝐼 𝑓 = 2 𝐼 𝑓 +1 2 𝐼 𝑖 +1 ∙𝐵 𝐸2; 𝐼 𝑓 → 𝐼 𝑖 N = 50 N = 82
28
Coulomb excitation results of semi-magic Sn isotopes
Z = 50 g7/2 d5/2 s1/2 d3/2 h11/2 seniority scheme
29
Coulomb excitation team
Vivek Mishra, Pieter Doornenbal, Mansi Saxena, Chhavi Joshi, Sunil Prajapati, Rakesh Kumar, Paer-Anders Soederstroem, Mohit Kumar, Sunil Dutt, Akhil Jhingan, Aakashrup Banerjee, Hans Jürgen Wollersheim.
30
Multiple (multi-step) Coulomb excitation
31
γ-ray decal after multiple Coulomb excitation
32
The reorientation effect
The excitation cross section is a direct measure of the E matrix elements. reorientation effect: If Ii Mf If 1st order: Ii 𝑃 0→2 (2) 𝜃,𝜉 =𝑃 0→2 (1) 𝜃,𝜉 ∙ 𝜋 ∙ 𝐴 𝑝 𝑍 𝑝 ∙ ∆𝐸 1+ 𝐴 𝑝 𝐴 𝑡 ∙ 𝑄 2 ∙𝐾 𝜃,𝜉 𝑄 =− 2𝜋 ∙ 2 𝑀 𝐸2 2
33
Shape coexistence in 74Kr
34
Deformed nuclei z b a 𝑅 𝜃,𝜙 = 𝑅 0 ∙ 1+𝛽∙ 𝑌 20 𝜃,𝜙 collective rotation
𝛽= 𝜋 5 Δ𝑅 𝑅 𝑅 = 𝑎+𝑏 2 𝑅 𝜃,𝜙 = 𝑅 0 ∙ 1+𝛽∙ 𝑌 20 𝜃,𝜙 Δ𝑅=𝑎−𝑏 𝐸 𝛾 = 𝐸 𝐼 − 𝐸 𝐼−2 = ℏ 2 2ℑ 4𝐼−2 𝐵 𝐸2;𝐼→𝐼−2 = 15 32𝜋 𝐼 𝐼+1 2𝐼−1 2𝐼+1 ∙ 𝑄 2 𝐸 𝐼 = ℏ 2 2ℑ 𝐼 𝐼+1 𝑄 2 = 3𝑍 𝑅 𝜋 ∙𝛽 ℑ= 2 5 𝐴∙𝑀∙ 𝑅 0 2 ∙ 𝛽 2 analysis with GOSIA code W. Spreng et al., Phys. Rev. Lett. 51 (1983), 1522
35
angular momentum transfer
Coulomb excitation angular momentum transfer 164Dy(208Pb, 208Pb´) EPb = 4.7 MeV/A 4+→2+ 6+→4+ 8+→6+ 10+→8+ 12+→10+ θcm= θcm= θcm= 14+→12+ 16+→14+ 18+→16+ ∆ 𝐿 𝑚𝑎𝑥 = 3 2 ∙ 𝐽 20 𝜃 𝑐𝑚 ∙𝑞 𝑞= 𝑍 𝑝 ∙ 𝑒 2 ∙ 𝑄 0 4∙ℏ∙𝑣∙ 𝑎 2 𝐽 20 𝜃 𝑐𝑚 = 𝑠𝑖𝑛 2 𝜃 𝑐𝑚 2 + 𝑡𝑎𝑛 2 𝜃 𝑐𝑚 2 1− 𝜋− 𝜃 𝑐𝑚 2 𝑡𝑎𝑛 𝜃 𝑐𝑚 2 𝐽 20 𝜃 𝑐𝑚 ≅ −𝑐𝑜𝑠 𝜃 𝑐𝑚
36
Coulomb excitation 𝜉=1 energy transfer 𝜉 𝜃 𝑐𝑚 = ∆ 𝐸 𝑒𝑥𝑐 ℏ∙𝑐 ∙ 𝐷−𝑎 𝛾∙𝛽
𝜉 𝜃 𝑐𝑚 = ∆ 𝐸 𝑒𝑥𝑐 ℏ∙𝑐 ∙ 𝐷−𝑎 𝛾∙𝛽 ξ measures suddenness of interaction “adiabatic limit” for (single step) excitation ξ = 1 VC ∆ 𝐸 𝑒𝑥𝑐 =ℏ∙𝑐∙ 𝛽∙𝛾 𝐷−𝑎 maximum energy transfer:
37
Evolution of nuclear structure as a function of nucleon number
Similar presentations
© 2025 SlidePlayer.com Inc.
All rights reserved.