Presentation is loading. Please wait.

Presentation is loading. Please wait.

5. FUNCTIONS Straight Lines Parabolas Hyperbolas Exponential Graphs

Similar presentations


Presentation on theme: "5. FUNCTIONS Straight Lines Parabolas Hyperbolas Exponential Graphs"— Presentation transcript:

1 5. FUNCTIONS Straight Lines Parabolas Hyperbolas Exponential Graphs
Average Gradient Trig Graphs: Recap Amplitude changes Period changes Horizontal shifts

2 STRAIGHT LINES y = m x + c m is the gradient c is the y - intercept

3 Example Find the equation of this straight line graph. the y intercept is – 3 so c = -3 the gradient is 6 down and 3 to the left so m = −𝟔 −𝟑 = 2 y = 2x – 3

4 Example Find the equation of this straight line graph. a = 𝒚 𝟐 − 𝒚 𝟏 𝒙 𝟐 − 𝒙 𝟏 = −𝟖−𝟎 𝟎 −𝟐 = −𝟖 −𝟐 =𝟒 y-intercept = -8 y = 4x – 8

5 Example Sketch the graph of y = -3x – 3. c = -3 so the y - intercept is – 3 x –intercept (y=0) 0 = -3x – 3 3x = -3 x = -1

6 Standard form: y = ax2 + bx + c
PARABOLAS Standard form: y = ax2 + bx + c a: a > 0: arms go up (smile) a < 0: arms go down (frown) b: b > 0: graph shifts to the left b < 0: graph shifts to the right c: c > 0: positive y-intercept c < 0: negative y-intercept Investigating the effects of b in a Parabola Finding the roots and vertex of a parabola Effects of a, b & c of Standard form of a Parabola

7 Example Sketch the graph of y = 2x² + 5x + 2 y-intercept: read off std. form c = 2 x-intercepts: y = 0 y = 2x² + 5x + 2 0 = (2x + 1) (x + 2) x = - ½ or x = - 2 Turning Point: Use formula …

8 … Sketch: y = 2x² + 5x + 2 … (Turning-point formula)

9 Example Find the equation of the parabola. (Given x-intercepts and 1 other point) y = a(x – root1)(x – root2) y = a(x – (-3))(x – 8) y = a(x + 3)(x – 8) Subst. pt: y-int (0;-24) y = a(x + 3)(x – 8) -24 = a(0 + 3)(0 – 8) -24 = -24a 1 = a

10 Finding the Equation of a Parabola
… Find the equation … Found … y = a(x + 3)(x – 8) a = 1 Equation in Std. Form: y = a(x + 3)(x – 8) y = 1(x + 3)(x – 8) y = x² - 5x - 24 Finding the Equation of a Parabola

11 Effects of p of the Turning Point form of a Parabola
PARABOLAS Turning - point form: y = a(x - p)2 + q a: a > 0: arms go up (smile) a < 0: arms go down (frown) (p;q) is the co-ordinate of the Turning Point p: p > 0: graph shifts to the left p < 0: graph shifts to the right q: q > 0: graph shifts up q < 0: graph shifts down Effects of p of the Turning Point form of a Parabola

12 Example Sketch the graph of y = 2(x – 1)2 – 18 y-intercept: x = 0 y = 2(0 – 1)2 – 18 y = - 8 TP (p; q) TP [-(-1); -18] TP (1;-18) x-intercepts: y = 0 y = 2(x – 1)2 – 18 0 = 2(x² - 2x + 1) – 18 0 = 2x² - 4x + 2 – 18 0 = 2x² - 4x – 16 0 = x² - 2x – 8 0 = (x - 4)(x + 2) x = 4 or x = - 2

13 Example Find the equation of the parabola. (Given the turning-point and 1 other point) TP (p;q) ∴ TP [-(1);-2] y = a(x - p)2 + q y = a(x + 1)² - 2 Subst. pt: y-int (0;-3) y = a(x + 1)² - 2 -3 = a(0 + 1)² - 2 -3 = a - 2 -1 = a

14 Finding the Turning Point Formula of a Parabola
… Find the equation … Found … y = a(x + 1)² - 2 a = -1 Equation in Std. form: y = a(x + 1)² - 2 y = -1(x + 1)² - 2 y = -x² - 2x - 3 Finding the Turning Point Formula of a Parabola

15 REFLECTING PARABOLAS Example: y = x2 + 8x – 2
* Reflect in the x-axis: every y swops signs – y = x2 + 8x – 2 y = – x2 – 8x + 2 * Reflect in the y-axis: every x swops signs y = (– x)2 + 8(– x) – 2 y = x2 – 8x - 2 * Reflect in the line y = x: swop x and y x = y2 + 8y – 2 Reflecting Parabolas Reflecting Lines

16 HYPERBOLAS RECAP! 𝒚= 𝒂 𝒙 +𝒒 Sketch the following graphs and write down the equation of the asymptotes: 1) 2) What are the equations of the asymptotes for … Vertical asymptote: x = 0 Horizontal asymptote: y = -1 2) Vertical asymptote: x = 0 Horizontal asymptote: y = 4

17 Standard form of a Hyperbola:
𝒚= 𝒂 𝒙−𝒑 +𝒒 a determines the quadrants a > 0 => Q 1 & 3 a < 0 => Q 2 & 4 q determines the horizontal asymptote i.e. vertical translation OR up/down shifts q > 0 => graph shifted up q < 0 => graph shifted down

18 Standard form of a Hyperbola:
𝒚= 𝒂 𝒙−𝒑 +𝒒 p determines the vertical asymptote i.e. horizontal translation OR left/right shifts p > 0 => graph shifted left p < 0 => graph shifted right

19 Example: Sketch the graph of:
a (quadrants): Q 1 & 3 q (horizontal asymptote): y = 4 p (vertical asymptote): p<0 so graph shifted to the right x = 3 Now, what about the x- and y-intercepts?

20 y – intercept (x=0): x – intercept (y=0):

21 Sketching Hyperbolas

22 Example: Sketch the graph of:
a (quadrants): Q 2 & 4 q (horizontal asymptote): y = -4 p (vertical asymptote): p>0 so graph shifted to the left x = -3 Now, what about the x- and y-intercepts?

23 y – intercept (x=0): x – intercept (y=0):

24

25 Example: Find the equation of the following graph:

26 𝒚= 𝒂 𝒙−𝒑 +𝒒 Substitute in the asymptotes …
Substitute a point that lies on the graph … Subst: (6;0) The Hyperbola

27 EXPONENTIAL GRAPHS RECAP! y = a.bx + q Sketch the following graphs and write down the equation of the asymptote: 1) y = 5 x ) y = 5 –x ) y = ½ x - 2 What is the equation of the asymptote for … 1) y = 0 (i.e. x-axis) 2) y = 2 3) y = -2 Cell Division

28 Example: Sketch the graph of: y = - (3)x
How will it differ from y = 3x ? What are the intercepts? What is the equation of the asymptote ?

29 y = 3x y = - (3)x

30 Standard form of an Exponential:
y = a.b x − p + q q is the horizontal asymptote i.e. represents a vertical shift (up/down shift) q > 0 => graph shifted up q < 0 => graph shifted down p represents a horizontal shift (left/right shift) p > 0 => graph shifted left p < 0 => graph shifted right

31 Standard form of an Exponential:
y = a.b x − p + q b determines the shape of the graph b > 0 => increasing function 0 < b < 0 (a fraction) => decreasing function a determines where the graph lies a > 0 => graph lies above the x-axis a < 0 => graph lies below the x-axis Investigating the Exponential Graph

32 Example: Sketch the graph of: y = 5.5 x + 1
Asymptote: y = 1 (no x-intercept) y-intercept: y = = = 6

33 Example: Sketch the graph of: y = -3.3-x - 3
Asymptote: y = - 3 (no x-intercept) y-intercept: y = – 3 = = 6

34 Example: Sketch the graph of: y = 4.2x+1 - 2
Asymptote: y = - 2 (no y-intercept) x-intercept: 0 = 4.2x = 4.2x+1 ½ = 2x+1 2-1 = 2x+1 -1 = x + 1 x = -2

35 Example: Find the equation of the graph if y = a.b x + q :
Subst. in asymptote: y = a.b x + 1 Subst. y-intercept: 3 = a.b 0 + 1 2 = a Subst. in pt (1;5): 5 = 2.b 1 + 1 4 = 2b b = 2 y = 2.2x + 1

36 Example: Determine the values of a and q, given
Summary of Exponential Transformations Example: Determine the values of a and q, given y = a.3 x+1 + q : Subst. in asymptote: y = a.3 x+1 + 1 q = 1 Subst. x-intercept: 0 = a.3 − -1 = a. 3 −1 a = -3 Finding the Equations of Exponential Graphs

37 Exponential Function in Life
Exponential growth of a bacterial culture Exponential Growth Exponential decay of radioactive material Exponential Decay

38 AVERAGE GRADIENT B(x1;y 1) 𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕= 𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒚 𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒙 A(x2;y2)
𝑮𝒓𝒂𝒅𝒊𝒆𝒏𝒕= 𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒚 𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒙 A(x2;y2) y2 – y1 x2 – x1 B(x1;y 1)

39 Calculating the Gradient
Example Calculate the gradient of AB. m(DE) = 𝑦 2 − 𝑦 1 𝑥 2 − 𝑥 1 = 8−(−1) 5−(−4) = 9 9 =1 D(5;8) E(-4;-1) Calculating the Gradient

40 Example: Find the average gradient between x = 1 and x = 2, given y = x2.

41 When x = 1, y = 1 therefore f(1) = 1.

42 m f(x) = x2 f(2)=4 f(1)=1 = 3

43 Average grad between x = 1 and x = 2 is 3
NB The gradient of a straight line is a constant

44 Average Gradient to Gradient at a Point
In general … f(x2) f(x1) Grad = x1 x2 Average Gradient to Gradient at a Point

45 𝑦 = 𝑠𝑖𝑛𝑥 𝑦 = 𝑐𝑜𝑠𝑥 𝑦 = 𝑡𝑎𝑛𝑥 TRIG GRAPHS: RECAP
Let’s investigate this change by plotting the graph of y = sin 2x …

46 y = sin x Domain: x ϵ [00 ; 3600] Range: - 1 ≤ y ≤ 1 Period: 3600
Amplitude: 1 The Sin Graph

47 y = cos x Domain: 00 ≤ x ≤ 3600 Range: y ϵ [- 1; 1] Period: 3600
Amplitude: 1 The Cos Graph

48 y = tan x

49 The graph of y = tan x does not go through x = 900 or x = 2700
Take note! The graph of y = tan x does not go through x = 900 or x = 2700 These lines i.e. x = 900 and x = 2700 are called asymptotes. y = tan x is undefined at these points. The Tan Graph Trig Graphs and the Unit Circle

50 Sketches of Trig Graphs between ±1080º
Summary of Trig Graphs The key characteristics of each trig graph: y = sinx …. starts at (0º; 0); “wave” curve y = cosx …. starts at (0º; 1); “bell” curve y = tanx …. starts at (0º; 0); “escalator” curve asymptotes at 90º and 270º Sketches of Trig Graphs between ±1080º

51 TRIG GRAPHS: AMPLITUDE CHANGES
𝑦 =𝑎𝑠𝑖𝑛𝑥 𝑦 =𝑎𝑐𝑜𝑠𝑥 𝑦 =𝑎𝑡𝑎𝑛𝑥 Let’s investigate this change by plotting the graph of y = 2 sinx …

52 Use your calculator to determine y …
x 30 60 90 120 150 180 y = sin x 0.5   0.87 1 0.5  y = 2 sin x 210 240 270 300 330 360 -0.5  -0.87 -1  -0.5

53 Now plot the graph of y = 2 sinx for x ϵ [ 00; 3600 ]
Values of y = 2 sinx are … x 30 60 90 120 150 180 y = sin x 0.5 0.87 1 0.5  y = 2 sin x  1 1.73 2 210 240 270 300 330 360 -0.5  -0.87 -1 -1  -1.73 -2 Now plot the graph of y = 2 sinx for x ϵ [ 00; 3600 ]

54 Amplitude changes to y=asinx
y = 2 sinx Domain: ≤ x ≤ 3600 Range: y ϵ [- 2; 2] Period: Amplitude: 2 Amplitude changes to y=asinx

55 Sketch the graph of y = 2 cosx and write down
Example: Sketch the graph of y = 2 cosx and write down the amplitude, period, domain and range. Amplitude: 2 Period: 3600 Domain: 00 ≤ x ≤ 3600 Range: y ϵ [- 2; 2] y = cos x y = 2 cos x

56 Summary: Amplitude changes in trig graphs
Example: Sketch the graph of y = ½ tanx and write down the amplitude, period, domain and range. Summary: Amplitude changes in trig graphs Amplitude: Period: 1800 Domain: 00 ≤ x ≤ 3600 Range: y ϵ R y = tan x y = ½ tan x

57 TRIG GRAPHS: PERIOD CHANGES
𝑦 = 𝑠𝑖𝑛𝑘𝑥 𝑦 = 𝑐𝑜𝑠𝑘𝑥 𝑦 = 𝑡𝑎𝑛𝑘𝑥 Let’s investigate this change by plotting the graph of y = sin 2x …

58 Use your calculator to determine y …
x 00 150 300 450 600 750 900 2 x  300 y = sin 2x 0.5 1050 1200 1350 1500 1650 1800

59 Now plot the graph of y = sin 2x for x ϵ [ 00; 3600 ]
Values of y = sin 2x are … x 00 150 300 450 600 750 900 2 x  300 1200 1500  1800 y = sin 2x 0.5 0.87 1 1050 1200 1350 1500 1650 1800 2100  2400 2700 3000 3300 3600 -0.5  -0.87 -1 Now plot the graph of y = sin 2x for x ϵ [ 00; 3600 ]

60 Graph of y = sin 2x Amplitude: 1 Domain: ≤ x ≤ 3600 Period: Range: y ϵ [- 1; 1]

61 Let’s compare … y = sin x y = sin 2x
y = sin 2x means there are 2 sin graphs with 3600

62 Sketch the graph of y = sin 4x
Example: Sketch the graph of y = sin 4x y = sin x y = sin 4x What is its period? 90◦ Investigating the effects of k in y = sinkx

63 Example: Use the table below to sketch the graphs of: x 00 900 1800 2700 3600 y = cos 2x y = cos 3x y = cos x y = cos 2x y = cos 3x

64 Summary: Period changes in trig graphs
Example: Sketch the graph of y = tan 2x for x ϵ [ 0 ; 3600 ] and state the period of the graph. Period = 90◦ Summary: Period changes in trig graphs

65 TRIG GRAPHS: VERTICAL CHANGES
𝑦 = sin 𝑥 +𝑞 𝑦 = cos 𝑥 +𝑞 𝑦 = tan𝑥+𝑞 Recap: Vertical translations

66 TRIG GRAPHS: HORIZONTAL CHANGES
𝑦 = sin⁡(𝑥+𝑝) 𝑦 = cos⁡(𝑥+𝑝) 𝑦 = tan⁡(𝑥+𝑝) Let’s investigate this change by plotting the graph of y = sin (x + 30◦) …

67 Use your calculator to determine y …
x 00 300 600 900 1200 1500 1800 x + 300 y=sin(x+30) 0.5 2100 2400 2700 3000 3300 3600 -0.87

68 Values of y = sin (x + 30◦) are …
00 300 600 900 1200 1500 1800 x + 300  600 2100 y=sin(x+30) 0.5 0.87 1 -0.5 2100 2400 2700 3000 3300 3600 3900 -0.87 -1 -0.5 0.5 Now plot the graph of y = sin (x+30◦) for x ϵ [-300; 3600 ]

69 Amplitude: 1 Domain: 00 ≤ x ≤ 3600 Period: 3600 Range: y ϵ [- 1; 1]
Graph of y = sin(x + 30◦) y=sin(x+300) y = sin x Amplitude: 1 Domain: ≤ x ≤ 3600 Period: Range: y ϵ [- 1; 1]

70 Shifting trig graphs horizontally
Example: Sketch y = sin(x – 300 ) for x ϵ [ 0 ; 4000 ] Graph of y = a sin b (x – p) Shifting trig graphs horizontally

71 Trig graphs: Period changes and Horizontal Shifts
Example: Sketch y = cos(x – 300 ) for x ϵ [ 0 ; 4000 ] y = cos x y = cos (x-30◦) Trig graphs: Period changes and Horizontal Shifts

72 Example: Sketch y = tan (x + 100) for x ϵ [ 0 ; 3600 ]

73 Summary of Sketching Trig Graphs: y = a sin/cos/tan (kx + p) + q
a = amplitude changes k = period changes p = horizontal shifts q = vertical shifts Graph of y = asinkx + q Graph of y = acoskx + q Revision: Sin & Cos Graphs

74 Determining the Equation of Trig Graphs y = a sin/cos/tan (kx + p) + q
Determine the “resting position of the graph” => this allows us to determine a i.e. the height amplitude of the graph Determine q => how far up/down the graph has shifted i.e. the vertical shift

75 4. Determine k => how many complete
Determine p => by how many degrees has the graph shifted left or right from it’s usual starting position i.e. the horizontal shift of the graph 4. Determine k => how many complete graphs within the “normal” 360º / 180º i.e. the period of the graph Finding the Equation of a y=sinx Graph Match the Sin or Cos Graph with its Equation


Download ppt "5. FUNCTIONS Straight Lines Parabolas Hyperbolas Exponential Graphs"

Similar presentations


Ads by Google