Presentation is loading. Please wait.

Presentation is loading. Please wait.

Scale Tendency Hand Calculations

Similar presentations


Presentation on theme: "Scale Tendency Hand Calculations"— Presentation transcript:

1 Scale Tendency Hand Calculations
Simplified models used to predict scale tendencies

2 Scale Tendency calculations in four steps
1) Write the reaction 𝑁𝑎𝐶𝑙 𝑠, ℎ𝑎𝑙𝑖𝑡𝑒 = 𝑁𝑎 + 𝑎𝑞 + 𝐶𝑙 − (𝑎𝑞) 2) Convert to an Equilibrium equation (shorthand form shown) 𝐾 𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 = 𝑎 𝑁𝑎 + ∗ 𝑎 𝐶𝑙 − 𝑁𝑎𝐶𝑙 (𝑠) = 𝑦 𝑁𝑎 + ∗ 𝑚 𝑁𝑎 + ∗ 𝛾 𝐶𝑙 − ∗ 𝑚 𝐶𝑙 − 𝑁𝑎𝐶𝑙 (𝑠) 3) Rearrange to test for solids 𝑆= 𝑦 𝑁𝑎 + ∗ 𝑚 𝑁𝑎 + ∗ 𝛾 𝐶𝑙 − ∗ 𝑚 𝐶𝑙 − 𝑁𝑎𝐶𝑙 𝑠 ∗ 𝐾 𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 1.0 by definition 4) Simplify 𝑆= 𝑦 𝑁𝑎 + ∗ 𝑚 𝑁𝑎 + ∗ 𝛾 𝐶𝑙 − ∗ 𝑚 𝐶𝑙 − 𝐾 𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 Scale Tendency calculations in four steps

3 Example: calculate SNaCl
measured calculated Na,ppm (mol/kg) Cl, ppm (mol/kg) Ksp C / P, atm) Na Cl 86,000 (3.74) 145,000 (4.09) 38.2 / 1) 0.84 (symmetry) 𝐾 𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 = 𝑎 𝑁𝑎 + ∗ 𝑎 𝐶𝑙 − 𝑁𝑎𝐶𝑙 (𝑠) = 𝑦 𝑁𝑎 + ∗ 𝑚 𝑁𝑎 + ∗ 𝛾 𝐶𝑙 − ∗ 𝑚 𝐶𝑙 − 𝑁𝑎𝐶𝑙 (𝑠) Step 1) 2) 𝑆= 𝑚 𝑁𝑎 + ∗ 𝑚 𝐶𝑙 − ∗ 𝑦 𝑁𝑎 + ∗ 𝛾 𝐶𝑙 − 𝐾 𝑠𝑝 𝑁𝑎𝐶𝑙, ℎ𝑎𝑙𝑖𝑡𝑒 15.30∗0.71=10.86 Solve) 𝑆= 3.74∗4.09 ∗ 0.84∗ =0.28 Example: calculate SNaCl

4 Calculate SNaCl with and without activity coefficients
Na,ppm (mol/kg) Cl, ppm (mol/kg) Ksp C / P, atm) Na Cl 87,250 (4.30) 134,549 (4.30) 35.8 0.74 147,250 (6.41) 225,414 (6.36) 36.5 1.11 10,800 (0.47) 19,850 (0.56) 41.3 0.69 S (w/o ) S (with ) 0.52 0.28 1.12 1.37 0.006 0.003 (symmetry) Calculate SNaCl with and without activity coefficients

5 Example: Calculate SCaCO3
Cation Anion ppm (mol/kg) Act coef (25C, 1atm) Na+ 14,500 (0.63) 0.665 Cl- 22,510 (0.69) 0.681 K+ 1,234 (0.032) 0.612 SO4-2 2,142 (0.022) 0.087 Ca+2 1,420 (0.035) 0.253 HCO3- 158 (4.0e-3) 0.555 Ba+2 2 (1.4e-5) 0.207 CO3-2 (1.18e-5) 0.093 𝑪𝒂𝑪 𝑶 𝟑 = 𝑪𝒂 +𝟐 + 𝑪 𝑶 𝟑 −𝟐 Step 1) 𝑆= 𝛾 𝐶𝑎 +2 ∗ 𝑚 𝐶𝑎 +2 ∗ 𝛾 𝐶 𝑂 3 −2 ∗ 𝑚 𝐶 𝑂 3 −2 𝐾 𝑠𝑝, 𝐶𝑎𝐶 𝑂 3 (𝑐𝑎𝑙𝑐𝑖𝑡𝑒), (𝑇,𝑃) Step 4) Assemble necessary variables (from software or literature) 𝐾 𝑠𝑝, 𝐶𝑎𝐶 𝑂 3 , (25 𝐶,1 𝑏𝑎𝑟) =2.43 𝑒 −9 Plug in data and calculate Answer: ST=3.99 Example: Calculate SCaCO3

6 Calculate T & P effects on Scale tendencies
CaSO4 BaSO4 CaCO3 Na Ca Ba Cl SO4 CO3 C Bar Ksp 50 30 2.78E-05 1.99E-10 2.41E-09 0.647 0.216 0.185 0.664 0.135 0.083 80 150 1.30E-05 2.61E-10 1.63E-09 0.624 0.178 0.164 0.636 0.113 0.068 120 300 3.28E-06 2.37E-10 4.65E-10 0.589 0.134 0.137 0.596 0.082 0.049 140 460 1.61E-06 1.96E-10 2.35E-10 0.568 0.115 0.124 0.575 0.066 0.040 170 600 4.46E-07 1.37E-10 6.06E-11 0.535 0.088 0.104 0.538 0.045 0.028 T P, bar CaSO4 BaSO4 CaCO3 C Bar S 50 30 80 150 120 300 140 460 170 600 Calculate T & P effects on Scale tendencies

7 Scale tendency models Hand calculations that include methods to predict K and 

8 Scale Prediction models
CaCO3 BaSO4, CaSO4, SrSO4 Halides Unique scales K Langlier Saturation Index Ryznar Stability index Pukoris Scale Index Stiff Davis Oddo-Tomson Computer Models (like OLI) semi-empirical Theoretical Scale Prediction models

9 Example: Calculate SCaSO4
Cation Anion Ion ppm (mol/kg) ion Na+ 14,500 (0.63) 0.665 Cl- 22,510 (0.69) 0.681 K+ 1,234 (0.032) 0.612 SO4-2 2,142 (0.022) 0.087 Ca+2 1,420 (0.035) 0.253 HCO3- 158 (4.0e-3) 0.555 Ba+2 2 (1.4e-5) 0.207 CO3-2 (1.18e-5) 0.093 𝑪𝒂𝑺 𝑶 𝟒 = 𝑪𝒂 +𝟐 + 𝑺 𝑶 𝟒 −𝟐 Step 1) 𝑆= 𝛾 𝐶𝑎 +2 ∗ 𝑚 𝐶𝑎 +2 ∗ 𝛾 𝑆 𝑂 4 −2 ∗ 𝑚 𝑆 𝑂 4 −2 𝐾 𝑠𝑝, 𝐶𝑎𝑆 𝑂 4 (𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑡𝑒), (𝑇,𝑃) Step 4) Assemble necessary variables (from software or literature) 𝐾 𝑠𝑝, 𝐶𝑎𝑆 𝑂 4 , (25 𝐶,1 𝑏𝑎𝑟) =4.40 𝑒 −5 Plug in data and calculate Answer: ST=0.385 Example: Calculate SCaSO4

10 Langelier Saturation Index (CaCO3 only)
Well known, pre-computer method Developed in 1936 to predict corrosion and CaCO3 scale in municipal water Results (next slide) LSI>0 Scale forms LSI<0 Scale dissolves Limits 6.5 – 9.0 pH 4000 mg/l TDS 95o C 𝐿𝑆𝐼= 𝑝𝐻 𝑚𝑒𝑎𝑠 − 𝑝𝐻 𝑠 pHmeas = measured pH pHs = pH at saturated CaCO3 𝑝𝐻 𝑠 = 𝑝𝐾 𝐴2 − 𝑝𝐾 𝑠𝑝 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 pK2 =HCO3  CO3 equilibrium const. pKsp = Calcite solubility product const. Ca+2 = Calcium conc. (mol/l) Alk = Alkalinity conc. (mol/l as HCO3-) Langelier Saturation Index (CaCO3 only)

11 LSI Derivation (to show equilibrium equation)
Start with this 𝑝𝐻 𝑠 = 𝑝𝐾 2 − 𝑝𝐾 𝑠𝑝 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 𝑝𝐾 𝑠𝑝 = 𝑝𝐾 2 −𝑝𝐻 𝑠 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 Rearrange −log 𝐾 𝑠𝑝 = −log 𝐾 2 + log 𝐻 𝑠 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 Convert p to -log Multiply by -1 log 𝐾 𝑠𝑝 = log 𝐾 2 − log 𝐻 𝑠 + log 𝐶𝑎 log 𝐴𝑙𝑘 𝐾 𝑠𝑝 = 𝐾 2 ∗ 𝐶𝑎 +2 ∗ 𝐻𝐶𝑂 3 − 𝐻 + Take the exponent 𝐶𝑂 3 −2 = 𝐾 2 ∗ 𝐻𝐶𝑂 3 − 𝐻 + Insert CO3 equation End with Solubility 𝐾 𝑠𝑝 = 𝐶𝑎 +2 ∗ 𝐶𝑂 3 −2 LSI Derivation (to show equilibrium equation)

12 Interpreting LSI Results
Scaling and Corrosion Tendency Treatment +4 Severe Scale Forming Required +3 Significant Scale Forming Recommended +2.0 Moderate Scale-forming Suggested +0.5 Slightly scaling and noncorrosive Balanced but corrosion possible No Treatment -0.5 Slightly corrosive and non-scaling -1 Mild Corrosion -2.0 Moderate Corrosion -3 Severe Corrosion Interpreting LSI Results

13 Calculate LSI for the following water
Measured data Constants and pH Ion mg/l mol/l Na+ 23,000 1.0 Ca+2 400 0.01 Cl- 35,500 Alk 610 25C 100C pK2 10.33 10.09 pKsp 8.62 9.28 pH 7.54 7.47 Results 𝐿𝑆𝐼=𝑝𝐻− 𝑝𝐾 2 − 𝑝𝐾 𝑠𝑝 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 25C 100C LSI OLI(ScaleTend) 6.8 35 𝐿𝑆𝐼 25𝐶 =7.54− −8.62 − log − log =1.83 𝐿𝑆𝐼 100𝐶 =7.47− −9.25 − log − log =2.63 Calculate LSI for the following water

14 LSI on the web These website contain an LSI calculator
LSI on the web These website contain an LSI calculator

15 Ryznar Stability Index
Ryznar (1942) refined LSI to distinguish waters with same LSI but different Ca/Alk ratios A ionic strength term is added to include salinity effects Primarily for corrosion, semi-quantitative for scale RSI is inverted: low values indicate scaling. High values indicate corrosion 𝑅𝑆𝐼=2 𝑝𝐻 𝑠 − 𝑝𝐻 𝑚𝑒𝑎𝑠 Where: 𝑝𝐻 𝑠 = 𝑝𝐾 2 − 𝑝𝐾 𝑠𝑝 − log 𝐶𝑎 +2 − log 𝐴𝑙𝑘 +𝐼′ and: 𝐼′= 2.5 𝐼 𝐼 +5.5𝐼 and: 𝐼= 1 2 𝑖 𝑚 𝑖 𝑧 𝑖 2 pK2 and pKs are same as Langelier constants I=ionic strength M=concentration (mol/kg) z=ion charge Ryznar Stability Index

16 Interpreting RSI Results
Scaling and Corrosion Tendency Heavy Scale Light Scale Little Scale or Corrosion Some Corrosion Heavy Corrosion 9.0+ Corrosion Intolerable Interpreting RSI Results

17 Ryznar on the Web

18 Puckorius Scaling Index (PSI)
Based on water buffering capacity and the maximum quantity of precipitate that can form 𝑃𝑆𝐼=2 𝑝𝐻 𝑆 − 𝑝𝐻 𝑒𝑞 Where: & 𝑝𝐻 𝑠 =9.3+𝐴+𝐵−𝐶−𝐷 𝑝𝐻 𝑒𝑞 =1.465∗ log 10 𝐴𝑙𝑘 +4.54 and: 𝐴= log 𝑇𝐷𝑆 −1 10 𝐵=−13.12∗ log 𝑇 𝐾 𝐷= log 𝐴𝑙𝑘 𝑎𝑠 𝐶𝑎𝐶𝑂3 𝐶= log 𝐶𝑎 +2 𝑎𝑠𝐶𝑎𝐶𝑂3 −0.4 𝐴𝑙𝑘 = 𝐻𝐶𝑂 ∗ 𝐶𝑂 3 + 𝑂𝐻 Puckorius Scaling Index (PSI)

19 Stiff Davis Index 𝑆𝑆𝐼=𝑝𝐻+ log 𝐶𝑎 +2 + log 𝐴𝑙𝑘 −𝐾
Stiff and Davis (1952) refined LSI to correct for high salinity of oilfield waters All the corrections are contained within a Temperature / Salinity plot 𝑆𝑆𝐼=𝑝𝐻+ log 𝐶𝑎 log 𝐴𝑙𝑘 −𝐾 Stiff Davis Index

20 Salinity Plot for Stiff-Davis
4 3.5 0oC 3 30oC 50oC 2.5 60oC 70oC K 2 80oC 1.5 90oC 100oC 1 0.5 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 Molar Ionic Strength Salinity Plot for Stiff-Davis

21 Calculate SSI for the same water
Measured data Constants and pH Ion mg/l mol/l mz2 Na+ 23,000 1.0 1 Ca+2 400 0.01 0.04 Cl- 35,500 Alk 610 25C 100C pK2 10.33 10.09 pKsp 8.62 9.28 pH 7.54 7.47 𝜇= =1.025 Results 𝑆𝑆𝐼=𝑝𝐻+ log 𝐶𝑎 log 𝐴𝑙𝑘 −𝐾 𝑆𝑆𝐼 25𝐶 =7.54−2−2−3.3=0.24 𝑆𝑆𝐼 100𝐶 =7.47−2−2−1.4=2.07 25C 100C Stiff Davis OLI(ScaleTend) 6.8 35 Calculate SSI for the same water

22 Oddo-Tomson Indices Initially developed in 1980’s
Available for CaCO3, CaSO4, BaSO4, and SrSO4 Includes gas phase for calcite scale based on English units; F and psia Oddo-Tomson was a significant advancement over previous indices. Operators and service companies created spreadsheets with this model. Many are still in use. Oddo-Tomson Indices Equations for Calculating CaCO3 scaling with a gas phase present.

23 𝑆𝐼= log 𝐶𝑎 +2 𝐻𝐶𝑂 3 − 2 𝑃 𝑦𝑔 𝐶𝑂2 ∅𝑔 𝐶𝑂2 +5.85+𝐴−𝐵+𝐶
𝐴= ∗𝑇−1.64∗ 10 −6 ∗𝑇 2 𝐵=5.27𝑥 10 −5 ∗𝑃 𝐶=1.431∗𝐼𝑆−3.334∗ 𝐼𝑆 Oddo-Tomson – CaCO3 T in Fahrenheit, P in psia, I in mg/l TDS/58400 J.E. Oddo, J.P. Smith, and M.B. Tomson Analysis of and solutions to the CaCO3 and CaSO4 problems in West Indonesia. SPE22782.

24 𝑆 𝑂 4 −2 = 𝐶 𝑆𝑂4 − 𝐶 𝑀𝑔 − 10 𝑝𝐾 ′ + 𝐶 𝑆𝑂4 − 𝐶 𝑀𝑔 − 10 𝑝𝐾 ′ 2 +4∗ 10 𝑝𝐾 ′ 𝐶 𝑆𝑂4 1/2 2
𝑝𝐾 ′ = 𝑒 −3 𝑇−1.2 𝑒 −6 𝑇 𝑒 −5 𝑃−2.38 𝐼 𝐼−1.3 𝑒 −3 𝐼 𝑇 𝑆𝐼 𝐶𝑎𝑆𝑂4, 𝑔𝑦𝑝𝑠𝑢𝑚 = log 𝐶 𝐶𝑎 𝑆 𝑂 4 − 𝑒 −3 𝑇+2.5 𝑒 −6 𝑇 2 −5.9 𝑒 −5 𝑃−1.13 𝐼 𝐼−2 𝑒 −3 𝐼 𝑇 𝑆𝐼 𝐶𝑎𝑆𝑂4, 𝑎𝑛ℎ𝑦𝑑𝑟𝑖𝑡𝑒 = log 𝐶 𝐶𝑎 𝑆 𝑂 4 − 𝑒 −3 𝑇+0.97 𝑒 −6 𝑇 2 −3.07 𝑒 −5 𝑃−1.09 𝐼 𝐼−3.3 𝑒 −3 𝐼 𝑇 Oddo-Tomson CaSO4 T in Fahrenheit, P in psia, I in mg/l TDS/58400 J.E. Oddo, J.P. Smith, and M.B. Tomson Analysis of and solutions to the CaCO3 and CaSO4 problems in West Indonesia. SPE22782.

25 Oddo-Tomson SrSO4 & BaSO4
𝑆 𝑂 4 −2 = 𝐶 𝑆𝑂4 − 𝐶 𝑀𝑔 − 𝐶 𝐶𝑎 − 10 𝑝𝐾 ′ 𝐶 𝑆𝑂4 − 𝐶 𝑀𝑔 − 𝐶 𝐶𝑎 − 10 𝑝𝐾 ′ ∗ 10 𝑝𝐾 ′ 𝐶 𝑆𝑂4 1/2 2 𝑆𝐼 𝑆𝑟𝑆𝑂4, 𝑐𝑒𝑙𝑒𝑠𝑡𝑖𝑡𝑒 = log 𝐶 𝑆𝑟 𝑆 𝑂 4 − 𝑒 −3 𝑇+6.4 𝑒 −6 𝑇 2 −4.6 𝑒 −5 𝑃−1.89 𝐼 𝐼−1.9 𝑒 −3 𝐼 𝑇 𝑆𝐼 𝑆𝑟𝑆𝑂4, 𝑏𝑎𝑟𝑖𝑡𝑒 = log 𝐶 𝐵𝑎 𝑆 𝑂 4 − 𝑒 −3 𝑇+11.4 𝑒 −6 𝑇 2 −4.8 𝑒 −5 𝑃−2.62 𝐼 𝐼−2.0 𝑒 −3 𝐼 𝑇 Oddo-Tomson SrSO4 & BaSO4 T in Fahrenheit, P in psia, I in mg/l TDS/58400 J.E. Oddo, J.P. Smith, and M.B. Tomson Analysis of and solutions to the CaCO3 and CaSO4 problems in West Indonesia. SPE22782.

26 Screenshot of the Oddo-Tomson paper

27 Screenshot of the Oddo-Tomson paper

28 Screenshot of the Oddo-Tomson paper

29 Larson-Skold Index epm=equivalents per million
Based on mild steel corrosion in Great Lakes water Ratio of epm SO42- and Cl- to epm HCO3-+CO3-2 X< SO42- and Cl- will not interfere with film formation 0.8<X< SO42- and Cl- may interfere with film formation. Higher corrosion rates anticipated X>1.2 - high local corrosion rates expected Larson-Skold Index epm=equivalents per million

30 Common Commercial Programs
Multi Scale (Expro Petrotech) ScaleSoftPitz (Rice University) Downhole SAT (French Creek Software) ScaleChem (OLI Systems) Common Commercial Programs

31 Equilibrium and steady- state
Equation of state * Chemical Speciation* Activity coefficient * Phase equilibrium Mass balance Charge balance Energy balance Process simulation non-Equilibrium and transient Mass transfer Phase velocity Nucleation kinetics Precipitation kinetics Scale inhibition Scale adhesion Commercial Software Contain some-many of the following equations/models * - minimum required for accurate oilfield scale prediction

32 Summary Many scale prediction tools available All have some value
All based on fundamental equilibrium equations Each have adjustments for temperature and salinity All have some value Low cost Easy to use Can calculate complex systems Can model mixing and inhibition Summary


Download ppt "Scale Tendency Hand Calculations"

Similar presentations


Ads by Google