Presentation is loading. Please wait.

Presentation is loading. Please wait.

explicit form and vice versa?

Similar presentations


Presentation on theme: "explicit form and vice versa?"โ€” Presentation transcript:

1 explicit form and vice versa?
Aim: How do we write a recursive sequence in explicit form and vice versa? Do Now: Given the sequence formulas a) ๐‘Ž ๐‘› =2+3(๐‘›โˆ’1) b) ๐‘Ž 1 =2 an = an โ€“1 + 3 What is the difference between them?

2 Converting from Recursive to Explicit
Use the following explicit formulas With a1 as first term (use for ๐‘›โ‰ฅ1) Arithmetic sequence: an = a1 + d(n โ€“ 1) Geometric Sequence: an = a1rn โ€“1 With a0 as first term (use for ๐‘›โ‰ฅ0) Arithmetic sequence: an = a0 + dn Geometric Sequence: an = a0rn

3 ๐‘Ž) ๐‘Ž ๐‘› =4 ๐‘Ž ๐‘›โˆ’1 with ๐‘Ž 1 =12 ๐‘Ž 2 =12โˆ™4 ๐‘Ž 3 =12โˆ™4โˆ™4=12โˆ™ 4 2
Convert each of the following recursive formulas to explicit formulas. Identify each sequence as arithmetic, geometric, or neither. ๐‘Ž) ๐‘Ž ๐‘› =4 ๐‘Ž ๐‘›โˆ’1 with ๐‘Ž 1 =12 ๐‘Ž 2 =12โˆ™4 ๐‘Ž 3 =12โˆ™4โˆ™4=12โˆ™ 4 2 ๐’‚ ๐’ =๐Ÿ๐Ÿโˆ™ ๐Ÿ’ ๐’โˆ’๐Ÿ ๐‘) ๐‘Ž ๐‘› =4.2+ ๐‘Ž ๐‘›โˆ’1 with ๐‘Ž 1 =12 ๐‘Ž 2 =12+4.2 ๐‘Ž 3 = =12+4.2(2) ๐’‚ ๐’ =๐Ÿ๐Ÿ+๐Ÿ’.๐Ÿ(๐’โˆ’๐Ÿ)

4 c) ๐‘Ž ๐‘›+1 = 5 ๐‘Ž ๐‘› with ๐‘Ž 0 =2 ๐‘Ž 1 = 5 โˆ™2 ๐‘Ž 2 = 5 โˆ™ 5 โˆ™2=2โˆ™ ๐’‚ ๐’ =๐Ÿโˆ™ ๐Ÿ“ ๐’ d) ๐‘Ž ๐‘›+1 = ๐‘Ž ๐‘› with ๐‘Ž 0 =2 ๐‘Ž 1 = 5 +2 ๐‘Ž 2 = =2+2 5 ๐’‚ ๐’ =๐Ÿ+๐’ ๐Ÿ“

5 Convert from Explicit to Recursive
Use the following recursive formulas Arithmetic sequence: an + 1 = an + d geometric sequence: an + 1 = an r Write each sequence in recursive form. ๐‘Ž) ๐‘Ž ๐‘› = ๐‘› for ๐‘›โ‰ฅ0 ๐‘Ž 0 = 1 5 ๐‘Ÿ=3 ๐’‚ ๐’+๐Ÿ = ๐’‚ ๐’ โˆ™๐Ÿ‘ ๐‘) ๐‘Ž ๐‘› =16โˆ’2๐‘› for ๐‘›โ‰ฅ1 ๐‘Ž 1 =14 ๐‘‘=โˆ’2 ๐’‚ ๐’+๐Ÿ = ๐’‚ ๐’ โˆ’๐Ÿ

6 ๐‘) ๐‘Ž ๐‘› = ๐‘› for ๐‘›โ‰ฅ1 ๐‘Ÿ= 1 2 ๐‘Ž 1 = ๐‘Ž 1 =8 ๐‘Ž ๐‘›+1 = ๐‘Ž ๐‘› 1 2 ๐‘‘) ๐‘Ž ๐‘› =71โˆ’ 6 7 ๐‘› for ๐‘›โ‰ฅ0 ๐‘‘=โˆ’ 6 7 ๐‘Ž 0 =71 ๐‘Ž ๐‘›+1 = ๐‘Ž ๐‘› โˆ’ 6 7

7 The first term a0of a geometric sequence is โ€“5, and the common ratio is โ€“2.
a. What are the terms a0, a1, and a2? ๐’‚ ๐ŸŽ =โˆ’๐Ÿ“, ๐’‚ ๐Ÿ =๐Ÿ๐ŸŽ, ๐’‚ ๐Ÿ =โˆ’๐Ÿ๐ŸŽ b. Find a recursive formula for this sequence. ๐’‚ ๐ŸŽ =โˆ’๐Ÿ“ c. Find an explicit formula for this sequence. ๐’‚ ๐’+๐Ÿ = ๐’‚ ๐’ (โˆ’๐Ÿ) ๐’‚ ๐’ = ๐’‚ ๐ŸŽ โˆ’๐Ÿ ๐’ d. What is term a9? ๐’‚ ๐Ÿ— =โˆ’๐Ÿ“ โˆ’๐Ÿ ๐Ÿ—=โˆ’๐Ÿ“ โˆ’๐Ÿ“๐Ÿ๐Ÿ =๐Ÿ๐Ÿ“๐Ÿ”๐ŸŽ e. What is term a10? ๐’‚ ๐Ÿ๐ŸŽ =โˆ’๐Ÿ“ โˆ’๐Ÿ ๐Ÿ๐ŸŽ=โˆ’๐Ÿ“ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ’ =โˆ’๐Ÿ“๐Ÿ๐Ÿ๐ŸŽ

8 The recursive formula for a geometric sequence is ๐‘Ž ๐‘›+1 =3
The recursive formula for a geometric sequence is ๐‘Ž ๐‘›+1 =3.92 ๐‘Ž ๐‘› with ๐‘Ž 0 = Find an explicit formula for this sequence. ๐’‚ ๐’ =๐Ÿ’.๐ŸŽ๐Ÿ“ ๐Ÿ‘.๐Ÿ—๐Ÿ ๐’ The explicit formula for a geometric sequence is ๐‘Ž ๐‘› = ๐‘›. Find a recursive formula for this sequence. ๐’‚ ๐’ =๐Ÿ๐Ÿ’๐Ÿ• ๐Ÿ.๐Ÿ ๐Ÿ‘๐’ =๐Ÿ๐Ÿ’๐Ÿ• ๐Ÿ”.๐Ÿ‘ ๐’ ๐’‚ ๐Ÿ =๐Ÿ๐Ÿ’๐Ÿ• ๐Ÿ”.๐Ÿ‘ =๐Ÿ—๐Ÿ๐Ÿ”.๐Ÿ ๐’‚ ๐Ÿ =๐Ÿ—๐Ÿ๐Ÿ”.๐Ÿ ๐’‚ ๐’+๐Ÿ = ๐’‚ ๐’ (๐Ÿ.๐Ÿ)


Download ppt "explicit form and vice versa?"

Similar presentations


Ads by Google