Presentation is loading. Please wait.

Presentation is loading. Please wait.

Qualitative Analysis of Systems of Ordinary Differential Equations

Similar presentations


Presentation on theme: "Qualitative Analysis of Systems of Ordinary Differential Equations"โ€” Presentation transcript:

1 Qualitative Analysis of Systems of Ordinary Differential Equations

2 Example Equilibrium Analysis in One Dimension: Example A predator-prey model says that a prey population ๐‘ฅ and a predator population ๐‘ฆ, as functions of ๐‘ก satisfy the differential equations ๐‘ฅ โ€ฒ =๐›ผ๐‘ฅโˆ’๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฆ โ€ฒ =๐›ฟ๐‘ฅ๐‘ฆโˆ’๐›พ๐‘ฆ Visualize the solutions to these equations with a phase plane and find all equilibrium solutions, given ๐›ผ=2, ๐›ฝ=6, ๐›ฟ=0.4, ๐›พ=1.3. (Assume ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก) measure the populations in thousands of individuals.) Solution To find equilibrium solutions, we set the derivatives equal to zero. ๐›ผ๐‘ฅโˆ’๐›ฝ๐‘ฅ๐‘ฆ=0 ๐›ฟ๐‘ฅ๐‘ฆโˆ’๐›พ๐‘ฆ=0 Solving, we obtain: ๐‘ฅ,๐‘ฆ = 0,0 & (3.250,0.333) Thus, we are at equilibrium if both species are extinct (0,0) or if the populations are at 3250 prey and 333 predators. (At equilibrium, it is expected that the predator population will be much smaller than the prey population.)

3 Example A predator-prey model says that a prey population ๐‘ฅ and a predator population ๐‘ฆ, as functions of ๐‘ก satisfy the differential equations ๐‘ฅ โ€ฒ =๐›ผ๐‘ฅโˆ’๐›ฝ๐‘ฅ๐‘ฆ ๐‘ฆ โ€ฒ =๐›ฟ๐‘ฅ๐‘ฆโˆ’๐›พ๐‘ฆ Visualize the solutions to these equations with a phase plane and find all equilibrium solutions, given ๐›ผ=2, ๐›ฝ=6, ๐›ฟ=0.4, ๐›พ=1.3. (Assume ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก) measure the populations in thousands of individuals.) ๐‘ฅ 0 ,๐‘ฆ 0 = 3.3 , 0.3 Solution A solution can be visualized by a parametric plot ๐‘ฅ ๐‘ก ,๐‘ฆ ๐‘ก . Letโ€™s assume, for example,

4 The plot indicates that the two populations are intertwined in a cyclic pattern. The two populations oscillate about the equilibrium (3.250,0.333). The initial condition (3.3,0.3) is indicated with a black point.

5 Instead of copy/pasting the code above and changing the constants, we can make it into a Module.

6 Example (a) Visualize the differential equations in ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก): ๐‘ฅ โ€ฒ = 1 2 ๐‘ฅโˆ’๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ (b) Verify that ๐ฑ 1 ๐‘ก = ๐‘’ โˆ’2๐‘ก is a solution; verify that ๐ฑ 2 ๐‘ก = ๐‘’ ๐‘ก โˆ’2 1 is a solution as well; verify that any linear combination of these is again a solution. (c) Visualize several solutions from part (b).

7 Example (a) Visualize the differential equations in ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก): ๐‘ฅ โ€ฒ = 1 2 ๐‘ฅโˆ’๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ Solution If we find a solution, we can call it ๐ฑ ๐‘ก = ๐‘ฅ ๐‘ก ,๐‘ฆ ๐‘ก . This is a parametric curve. Its velocity at time ๐‘ก will be ๐‘ฅ โ€ฒ ๐‘ก , ๐‘ฆ โ€ฒ ๐‘ก . On the other hand, to be a solution, it must satisfy the differential equations, which means: ๐‘ฃ๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ= ๐‘ฅ โ€ฒ ๐‘ก , ๐‘ฆ โ€ฒ ๐‘ก must be equal to ๐‘ฅโˆ’๐‘ฆ,โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ at the point (๐‘ฅ,๐‘ฆ) This is a bit like a slope-field, but now itโ€™s a full-fledged velocity field!

8 Solution parametric curves will travel through
the vector field with the indicated velocity.

9 Example (a) Visualize the differential equations in ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก): ๐‘ฅ โ€ฒ = 1 2 ๐‘ฅโˆ’๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ (b) Verify that ๐ฑ 1 ๐‘ก = ๐‘’ โˆ’2๐‘ก is a solution; verify that ๐ฑ 2 ๐‘ก = ๐‘’ ๐‘ก โˆ’2 1 is a solution as well; verify that any linear combination of these is again a solution. The solution ๐ฑ 1 ๐‘ก = ๐‘’ โˆ’2๐‘ก has ๐‘ฅ-component ๐‘ฅ ๐‘ก =2 ๐‘’ โˆ’2๐‘ก and ๐‘ฆ-component 5 ๐‘’ โˆ’2๐‘ก . Plug in for ๐‘ฅ and ๐‘ฆ. Solution โˆ’4 ๐‘’ โˆ’2๐‘ก = ๐‘’ โˆ’2๐‘ก โˆ’5 ๐‘’ โˆ’2๐‘ก โˆ’10 ๐‘’ โˆ’2๐‘ก =โˆ’ ๐‘’ โˆ’2๐‘ก โˆ’ ๐‘’ โˆ’2๐‘ก A bit of arithmetic verifies that these equations are indeed true. So we do have a solution to the differential equation (!) The details of verifying ๐‘’ ๐‘ก โˆ’2 1 and the linear combinations of these two solutions is left as an exercise.

10 Example (a) Visualize the differential equations in ๐‘ฅ(๐‘ก) and ๐‘ฆ(๐‘ก): ๐‘ฅ โ€ฒ = 1 2 ๐‘ฅโˆ’๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ (c) Visualize several solutions from part (b). Some solutions are plotted by picking various linear combinations.

11 How do we find them? Discussion
In the previous problem, we found that solutions to the linear system ๐‘ฅ โ€ฒ = 1 2 ๐‘ฅโˆ’๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’ 5 4 ๐‘ฅโˆ’ 3 2 ๐‘ฆ How do we find them? could be found of the form ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ for certain values of ๐œ† and certain vectors ๐ฎ. First write the differential equation in matrix form. where ๐ฑ= ๐‘ฅ ๐‘ฆ and ๐€= 1/2 โˆ’1 โˆ’5/4 โˆ’3/2 ๐ฑ โ€ฒ =๐€๐ฑ Now suppose we โ€œguessโ€ ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and plug this into the differential equation. ๐œ† ๐‘’ ๐œ†๐‘ก ๐ฎ= ๐‘’ ๐œ†๐‘ก ๐€๐ฎ Divide both sides by ๐‘’ ๐œ†๐‘ก . ๐€๐ฎ=๐œ†๐ฎ This is called the characteristic equation for the matrix ๐€ See the Crash Course on Linear Algebra presentation for a complete description of how to solve this.

12 Example Solve the linear system of differential equations. Draw a phase portrait. ๐‘ฅ โ€ฒ = ๐‘ฅโˆ’ 1 80 ๐‘ฆ ๐‘ฆ โ€ฒ = ๐‘ฅ ๐‘ฆ Rewrite the system as ๐ฑ โ€ฒ =๐€๐ฑ where ๐€= 11/200 โˆ’1/80 1/100 1/40 . Solution Guess ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and solve the eigen-equation: ๐€๐ฎ=๐œ†๐ฎ First find the eigenvalues by solving det ๐€โˆ’๐œ†๐ˆ =0: ๐œ† 1 =3/100, ๐œ† 2 =1/20. The eigenvectors corresponding to these are: ๐ฎ 1 = , ๐ฎ 2 = Conclude that the general solution is: ๐ฑ= ๐ถ 1 ๐ฑ 1 + ๐ถ 2 ๐ฑ 2 ๐ฑ= ๐ถ 1 ๐‘’ ๐‘ก 2 ๐‘’ ๐‘ก + ๐ถ ๐‘’ ๐‘ก 2 ๐‘’ ๐‘ก

13 Example Solve the linear system of differential equations. Draw a phase portrait. ๐‘ฅ โ€ฒ = ๐‘ฅโˆ’ 1 80 ๐‘ฆ ๐‘ฆ โ€ฒ = ๐‘ฅ ๐‘ฆ EQUILIBRIUM TYPE: UNSTABLE NODE Solution ๐ฑ= ๐ถ 1 ๐‘’ ๐‘ก 2 ๐‘’ ๐‘ก + ๐ถ ๐‘’ ๐‘ก 2 ๐‘’ ๐‘ก

14 Example (Complex Eigenvalues)
Consider the system of differential equations (derivatives are with respect to ๐‘ก) ๐‘ฅ โ€ฒ =3๐‘ฅโˆ’4๐‘ฆ ๐‘ฆ โ€ฒ =4๐‘ฅ+๐‘ฆ Find the general solution; visualize it. Solution Again, the equation is ๐ฑ โ€ฒ =๐€๐ฑ. We guess ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and get the eigen-equation ๐€๐ฎ=๐œ†๐ฎ. Find eigenvalues by solving det ๐€โˆ’๐œ†๐ˆ =0: ๐œ† 1,2 =2ยฑ 15 ๐‘–

15 FACTS FROM COMPLEX EIGENVALUE THEORY
Fact 1: Complex eigenvalues will come in complex conjugate pairs ๐œ† +,โˆ’ =๐‘Žยฑ๐‘๐‘– Fact 2: Corresponding eigenvectors will come in complex conjugate pairs ๐ฎ, ๐ฎ Fact 3: If we use the + eigenvalue ๐œ† + =๐‘Ž+๐‘๐‘– and the corresponding eigenvector ๐ฎ, then the complex solution ๐‘’ ๐œ† + ๐‘ก ๐ฎ is correct if interpreted through Eulerโ€™s Identity: the real part will be a solution and the imaginary part will be a solution. Fact 4: No new solutions are found by using ๐œ† โˆ’ .

16 Example (Complex Eigenvalues)
Consider the system of differential equations (derivatives are with respect to ๐‘ก) ๐‘ฅ โ€ฒ =3๐‘ฅโˆ’4๐‘ฆ ๐‘ฆ โ€ฒ =4๐‘ฅ+๐‘ฆ Find the general solution; visualize it. Solution Again, the equation is ๐ฑ โ€ฒ =๐€๐ฑ. We guess ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and get the eigen-equation ๐€๐ฎ=๐œ†๐ฎ. Find eigenvalues by solving det ๐€โˆ’๐œ†๐ˆ =0: ๐œ† 1,2 =2ยฑ 15 ๐‘– From the theory, we know we only have to use ๐œ† 1 = ๐‘–. ๐ฎ 1 = ๐‘– 4 Find the eigenvector: ๐ฑ = ๐‘’ ๐œ† 1 ๐‘ก ๐ฎ 1 ; ๐ฑ 1 =Re ๐ฑ ; ๐ฑ 2 =Im ๐ฑ ๐ฑ 1 = ๐‘’ 2๐‘ก cos ๐‘ก + ๐‘’ 2๐‘ก sin ๐‘ก 4 ๐‘’ 2๐‘ก cos ๐‘ก ๐ฑ 2 = ๐‘’ 2๐‘ก cos ๐‘ก + ๐‘’ 2๐‘ก sin ๐‘ก 4 ๐‘’ 2๐‘ก sin ๐‘ก ๐ฑ= ๐ถ 1 ๐ฑ 1 + ๐ถ 2 ๐ฑ 2

17 Example (Complex Eigenvalues)
Consider the system of differential equations (derivatives are with respect to ๐‘ก) ๐‘ฅ โ€ฒ =3๐‘ฅโˆ’4๐‘ฆ ๐‘ฆ โ€ฒ =4๐‘ฅ+๐‘ฆ Find the general solution; visualize it. Solution ๐ฑ 1 = ๐‘’ 2๐‘ก cos ๐‘ก + ๐‘’ 2๐‘ก sin ๐‘ก 4 ๐‘’ 2๐‘ก cos ๐‘ก ๐ฑ 2 = ๐‘’ 2๐‘ก cos ๐‘ก + ๐‘’ 2๐‘ก sin ๐‘ก 4 ๐‘’ 2๐‘ก sin ๐‘ก ๐ฑ= ๐ถ 1 ๐ฑ 1 + ๐ถ 2 ๐ฑ 2 EQUILIBRIUM TYPE: UNSTABLE SPIRAL

18 Example Solve, analyze, visualize: ๐‘ฅ โ€ฒ =3๐‘ฅโˆ’6๐‘ฆ ๐‘ฆ โ€ฒ =3๐‘ฅโˆ’3๐‘ฆ Solution Write the equation in matrix-vector notation ๐ฑ โ€ฒ =๐€๐ฑ; guess ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and solve the eigen-equation ๐€๐ฎ=๐œ†๐ฎ. Values of ๐œ† must satisfy det ๐€โˆ’๐œ†๐ˆ =0, yielding ๐œ†=ยฑ3๐‘–. We may focus on ๐œ† 1 =3๐‘–. The corresponding eigenvector ๐ฎ is ๐ฎ 1 = 1+๐‘– 1 . Two solutions are found from real and imaginary parts: ๐ฑ 1 =Re ๐‘’ ๐œ† 1 ๐‘ก ๐ฎ 1 , ๐ฑ 2 =Im ๐‘’ ๐œ† 1 ๐‘ก ๐ฎ 1 ๐ฑ 1 = cos 3๐‘ก โˆ’ sin 3๐‘ก cos 3๐‘ก , ๐ฑ 2 = cos 3๐‘ก + sin 3๐‘ก sin 3๐‘ก ๐ฑ= ๐ถ 1 ๐ฑ 1 + ๐ถ 2 ๐ฑ 2 Analysis It can be shown through trig identities that the ellipses have major axis at angle ๐‘œ and that the major radii are times the length of the minor radii. Solutions have period ๐œ/3=2.094 s EQUILIBRIUM TYPE: STABLE CENTER

19 Example Solve, analyze, visualize: ๐‘ฅ โ€ฒ =โˆ’2๐‘ฆ ๐‘ฆ โ€ฒ =โˆ’๐‘ฅ+๐‘ฆ Solution Write the equation in matrix-vector notation ๐ฑ โ€ฒ =๐€๐ฑ; guess ๐ฑ= ๐‘’ ๐œ†๐‘ก ๐ฎ and solve the eigen-equation ๐€๐ฎ=๐œ†๐ฎ. Values of ๐œ† must satisfy det ๐€โˆ’๐œ†๐ˆ =0, yielding real eigenvalues ๐œ† 1 =2, ๐œ† 2 =โˆ’1. The eigenvectors, found by finding the nullspaces of ๐€โˆ’๐œ†๐ˆ are ๐ฎ 1 = 1 โˆ’1 and ๐ฎ 2 = ๐ฑ 1 = ๐‘’ ๐œ† 1 ๐‘ก ๐ฎ 1 = ๐‘’ 2๐‘ก โˆ’ ๐‘’ 2๐‘ก , ๐ฑ 2 = ๐‘’ ๐œ† 2 ๐‘ก ๐ฎ 2 = 2 ๐‘’ โˆ’๐‘ก ๐‘’ โˆ’๐‘ก ๐ฑ= ๐ถ 1 ๐ฑ 1 + ๐ถ 2 ๐ฑ 2 EQULIBRIUM TYPE: (UNSTABLE) SADDLE NODE

20 Phase Portraits We are going to study the following non-linear system in a fair amount of detail: ๐‘ฅ โ€ฒ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐‘ฆ โ€ฒ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 Our study will go through the following steps: 1. Identify the equilibrium points 2. Draw a phase portrait with software and label the equilibrium points on it 3. Linearize the system about each equilibrium point 4. Solve the linearizations to understand local and global behavior of the original non-linear system

21 Phase Portraits We are going to study the following non-linear system in a fair amount of detail: ๐‘ฅ โ€ฒ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐‘ฆ โ€ฒ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 1. Identify the equilibrium points 2. Draw a phase portrait with software and label the equilibrium points on it Solution We set ๐‘ฅ โ€ฒ and ๐‘ฆ โ€ฒ to zeroโ€ฆ ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4=0 ๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 =0 ๐‘ฅ,๐‘ฆ : โˆ’2,0 , โˆ’1,1 , 1,โˆ’1 , 2,0 3. Linearize the system about each equilibrium point Letโ€™s study the point (โˆ’1,1) first.

22 Phase Portraits ๐‘ฅ โ€ฒ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐‘ฆ โ€ฒ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 [ ๐‘ข โ€ฒ =โˆ’5๐‘ข+3๐‘ฃ ๐‘ฃ โ€ฒ =๐‘ข+๐‘ฃ

23 Phase Portraits ๐‘ข โ€ฒ =โˆ’5๐‘ข+3๐‘ฃ ๐‘ฃ โ€ฒ =๐‘ข+๐‘ฃ

24 Phase Portraits ๐‘ข โ€ฒ =โˆ’5๐‘ข+3๐‘ฃ ๐‘ฃ โ€ฒ =๐‘ข+๐‘ฃ โ€œGuessโ€ ๐ฎ= ๐‘’ ๐œ†๐‘ก ๐ฐ ๐ฎ โ€ฒ = โˆ’ ๐ฎ ๐œ† 1 =โˆ’2โˆ’2 3 , ๐œ† 2 =โˆ’2+2 3 ๐ฐ ๐Ÿ = โˆ’3โˆ’ , ๐ฐ 2 = โˆ’ ๐ฎ= ๐ฎ 1 + ๐ฎ 2 ๐ฎ ๐‘ก = ๐‘’ โˆ’2โˆ’2 3 ๐‘ก โˆ’3โˆ’ ๐‘’ โˆ’ ๐‘ก โˆ’ ๐ฎ ๐‘ก = ๐‘’ โˆ’5.46๐‘ก โˆ’ ๐‘’ 1.46๐‘ก

25 Before we move on to study the equilibrium point (2,0)
๐‘ฅ โ€ฒ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐‘ฆ โ€ฒ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 =: ๐น 1 ๐‘ฅ,๐‘ฆ we need a formula for the linearization. =: ๐น 2 (๐‘ฅ,๐‘ฆ) Here it is: ๐ท ๐… ๐ฑ 0 = ๐œ• ๐… 1 /๐œ•๐‘ฅ ๐œ• ๐… 1 /๐œ•๐‘ฆ ๐œ• ๐… 2 /๐œ•๐‘ฅ ๐œ• ๐… 2 /๐œ•๐‘ฆ 2,0 ๐ฎ โ€ฒ =๐ท ๐… ๐ฑ 0 ๐ฎ Local Linearization Formula for Equilibria If ๐ฑ 0 = ๐‘ฅ 0 , ๐‘ฆ 0 is an equilibrium point of the system of differential equations ๐ฑ โ€ฒ =๐… ๐ฑ then, in local coordinates ๐‘ข=๐‘ฅโˆ’ ๐‘ฅ 0 , ๐‘ฃ=๐‘ฆโˆ’ ๐‘ฆ 0 , the linearization is ๐ฎ โ€ฒ =๐ท ๐… ๐ฑ 0 ๐ฎ where ๐ท ๐… ๐ฑ 0 is the Jacobian matrix ๐ท ๐… ๐ฑ 0 = ๐œ• ๐… 1 /๐œ•๐‘ฅ ๐œ• ๐… 1 /๐œ•๐‘ฆ ๐œ• ๐… 2 /๐œ•๐‘ฅ ๐œ• ๐… 2 /๐œ•๐‘ฆ ๐ท ๐… ๐ฑ 0 = ๐œ• ๐œ•๐‘ฅ ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐œ• ๐œ•๐‘ฆ ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐œ• ๐œ•๐‘ฅ ๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 ๐œ• ๐œ•๐‘ฆ ๐‘ฅ๐‘ฆ+ ๐‘ฆ ,0 ๐น 1 ๐‘ฅ,๐‘ฆ ๐น 2 ๐‘ฅ,๐‘ฆ ๐ฑ โ€ฒ ๐ฑ โ€ฒ =๐… ๐‘ฅ,๐‘ฆ ๐ฑ โ€ฒ =๐… ๐ฑ ๐ฑ โ€ฒ = ๐‘ฅ โ€ฒ ๐‘ฆ โ€ฒ ๐ฑ= ๐‘ฅ ๐‘ฆ = 2๐‘ฅโˆ’3๐‘ฆ โˆ’3๐‘ฅ ๐‘ฆ ๐‘ฅ+2๐‘ฆ 2,0 ๐น 1 ๐‘ฅ,๐‘ฆ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐น 1 ๐‘ฅ,๐‘ฆ ๐ฑ โ€ฒ ๐ฒ โ€ฒ ๐‘ฅ โ€ฒ = ๐‘ฅ 2 โˆ’3๐‘ฅ๐‘ฆโˆ’4 ๐‘ฆ โ€ฒ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 ๐น 2 ๐‘ฅ,๐‘ฆ =๐‘ฅ๐‘ฆ+ ๐‘ฆ 2 = 4 โˆ’6 0 2 ๐น 2 ๐‘ฅ,๐‘ฆ ๐ฎ โ€ฒ = 4 โˆ’ ๐ฎ

26 ๐ฎ โ€ฒ = 4 โˆ’ ๐ฎ ๐œ† 1 =2, ๐œ† 2 =4 ๐ฎ= ๐‘’ ๐œ†๐‘ก ๐ฐ ๐ฐ 1 = , ๐ฐ 2 = 1 0 ๐ฎ= ๐ถ 1 ๐ฎ 1 + ๐ถ 2 ๐ฎ 2 ๐ฎ= ๐ถ 1 ๐‘’ 2๐‘ก ๐ถ 2 ๐‘’ 4๐‘ก 1 0

27 Just two more equilibrium points to study.
Try them yourself!

28


Download ppt "Qualitative Analysis of Systems of Ordinary Differential Equations"

Similar presentations


Ads by Google