Download presentation
1
Lithium-Sulfur-Battery
Florian Schmidt
2
Requirements on modern Batteries
new fields of application: electric mobility engery storage high energy density and capacity 𝐸 𝑆 = 𝐶 𝑆 ∙ 𝑈 𝑍 Lithiumpreisentwicklung Schwefelpreis J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176. R. Korthauer, Handbuch Lithium-Ionen-Batterien, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. (Stand: ) (Stand: ) R. Van Noorden, Nature 2013, 498, 416–417. Slide 2
3
Requriements on modern Batteries
cheap materials with high availability S is the 17th most common element (~ 100 $/t) long service life and cycle stability short charge time eco-sensitive temperature-stable security Lithiumpreisentwicklung Schwefelpreis R. Korthauer, Handbuch Lithium-Ionen-Batterien, Springer Berlin Heidelberg, Berlin, Heidelberg, (Stand: ) (Stand: ) (Stand: ) Slide 3
4
Lithium-Sulfur-Battery
maximum of engery density is nearly reached new batteries Li-S has higher engery density lower cost per cathode P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176. (Stand: ) (Stand: ) Slide 4
5
Lithium-Sulfur-Battery
anode: Lithium cathode: Sulfur in carbon matrix (optional with polymeric binder) electrolyte DME-DOL-Mixture conducting salt LiN(SO2CF3)2 (LiTFSI) (Stand: ) S. S. Zhang, Journal of Power Sources 2013, 231, 153–162. Slide 5
6
Lithium-Sulfur-Battery
anode Li → Li+ + e- cathode S e- → 8 S2- redox equotation 16 Li + S8 → 8 Li2S P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. S. S. Zhang, Journal of Power Sources 2013, 231, 153–162. Slide 6
7
Lithium-Sulfur-Battery
I S8 + 2 Li → Li2S8 II Li2S8 + 2 Li → Li2S8-n + Li2Sn III 2 Li2Sn + (2n-4) Li → n Li2S2 Li2Sn + (2n-2) Li → n Li2S IV Li2S2 + 2 Li → 2 Li2S P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. S. S. Zhang, Journal of Power Sources 2013, 231, 153–162. Slide 7
8
Lithium-Sulfur-Battery
Problems poor electric conductivity of S and Li2S expansion of volume during discharge process toxicity of conducting salt polysulfide shuttle mechanism P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. Y. Yang, G. Zheng, Y. Cui, Chemical Society Reviews 2013, 42, 3018. S. S. Zhang, Journal of Power Sources 2013, 231, 153–162. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gentle, G. Q. M. Lu, Journal of Materials Chemistry A 2013, 1, Slide 8
9
Lithium-Sulfur-Battery
Polysulfide shuttle loss of active mass morphological change of the cathode passivation of Li-Anode self-drain of battery increase of charge time P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nature Communications 2015, 6, 5682. Y. Yang, G. Zheng, Y. Cui, Chemical Society Reviews 2013, 42, 3018. Slide 9
10
Lithium-Sulfur-Battery
Inhibition of shuttle mechanism addition of metaloxids various carbon nanostructures addition of LiNO3 solid electrolyte materials optimization of conducting salt P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nature Communications 2015, 6, 5682. Slide 10
11
Lithium-Sulfur-Battery
Metaloxids (Al, Ti, Y, Si, Mn, V) two approaches coating (CVD,ALD…) admixture MnO2 P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. K. T. Lee, R. Black, T. Yim, X. Ji, L. F. Nazar, Advanced Energy Materials 2012, 2, 1490–1496. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nature Communications 2015, 6, 5682. Slide 11
12
Lithium-Sulfur-Battery
Volume expansion dead space Yolk-shell nanoparticles Conducting salt limited choice consens between opression of shuttle mechanism and velocity of cellreactions P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nature Communications 2015, 6, 5682. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nature Communications 2013, 4, 1331. Slide 12
13
Summary soon culmination of the capacity and energy density of Li-Ion-batteries massive increase of energy density through Li-S-batteries recent research priorities: polysulfide shuttle volume expansion elektrolyte/conducting salt P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek, Beilstein Journal of Nanotechnology 2015, 6, 1016–1055. X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nature Communications 2015, 6, 5682. (Stand: ) (Stand: ) Slide 13
14
Thank you for your attention!
Folie 17
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.