EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
Advertisements

EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 06 – Spring 2011 Professor Ronald L. Carter
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 05 – Spring 2011 Professor Ronald L. Carter
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 - Fall 2009 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
L06 31Jan021 Semiconductor Device Modeling and Characterization EE5342, Lecture 6-Spring 2002 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 8 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 6 - Fall 2009 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L09 12Feb021 Semiconductor Device Modeling and Characterization EE5342, Lecture 9-Spring 2002 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
ECE574 – Lecture 3 Page 1 MA/JT 1/14/03 MOS structure MOS: Metal-oxide-semiconductor –Gate: metal (or polysilicon) –Oxide: silicon dioxide, grown on substrate.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 7 - Fall 2009
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 9 - Fall 2009
Semiconductor Device Modeling & Characterization Lecture 19
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter

Project Discussion – Ideal Diode equations ©rlc L23-14Apr20112 Ideal diode, J s expd(V a /(  V t )) –ideality factor,  Recombination, J s,rec exp(V a /(2  V t )) –appears in parallel with ideal term High-level injection, (J s *J KF ) 1/2 exp(V a /(2  V t )) –SPICE model by modulating ideal J s term V a = V ext - J*A*R s = V ext - I diode *R s

Project Discussion – Ideal Diode Forward Current Equations ©rlc L23-14Apr20113 Id = area·(Ifwd - Irev) Ifwd = forward current = Inrm·Kinj + Irec·Kgen Inrm = normal current = IS·(eVd/(N·Vt)-1) if: IKF > 0 then: Kinj = (IKF/(IKF+Inrm)) 1/2 else: Kinj = 1 Irec = recombination current = ISR·(eVd/(NR·Vt)-1)

©rlc L23-14Apr20114 Dinj –N~1, rd~N*Vt/iD –rd*Cd = TT = –Cdepl given by CJO, VJ and M Drec –N~2, rd~N*Vt/iD –rd*Cd = ? –Cdepl =? SPICE Diode Model 

Derivation Tips ©rlc L23-14Apr20115

6

7 Ideal 2-terminal MOS capacitor/diode x -x ox 0 SiO 2 silicon substrate V gate V sub conducting gate, area = LW t sub 0 y L

©rlc L23-14Apr20118 Band models (approx. scale) EoEo EcEc EvEv q  ox ~ 0.95 eV metalsilicon dioxidep-type s/c q  m = 4.1 eV for Al EoEo E Fm E Fp EoEo EcEc EvEv E Fi q  s,p q  Si = 4.05eV E g,ox ~ 8 eV

©rlc L23-14Apr20119 Flat band condition (approx. scale) E c,Ox EvEv AlSiO 2 p-Si q(  m -  ox )= 3.15 eV E Fm E Fp EcEc EvEv E Fi q(  ox -  Si )=3.1eV E g,ox ~8eV q  fp = 3.95eV

©rlc L23-14Apr Equivalent circuit for Flat-Band Surface effect analogous to the extr Debye length = L D,extr = [  V t /(qN a )] 1/2 Debye cap, C’ D,extr =  Si /L D,extr Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ D,extr

©rlc L23-14Apr Accumulation for V gate < V FB SiO 2 p-type Si V gate < V FB V sub = 0 E Ox,x <0 x -x ox 0 t su b holes

©rlc L23-14Apr Accumulation p-Si, V gs < V FB Fig 10.4a*

©rlc L23-14Apr Equivalent circuit for accumulation Accum depth analogous to the accum Debye length = L D,acc = [  V t /(qp s )] 1/2 Accum cap, C’ acc =  Si /L D,acc Oxide cap, C’ Ox =  Ox /x Ox Net C is the series comb C’ Ox C’ acc

©rlc L23-14Apr Depletion for p-Si, V gate > V FB SiO 2 p-type Si V gate > V FB V sub = 0 E Ox,x > 0 x -x ox 0 t su b Acceptors Depl Reg

©rlc L23-14Apr Depletion for p-Si, V gate > V FB Fig 10.4b*

©rlc L23-14Apr References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986