Presentation is loading. Please wait.

Presentation is loading. Please wait.

Professor Ronald L. Carter

Similar presentations


Presentation on theme: "Professor Ronald L. Carter"— Presentation transcript:

1 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/
EE5342 – Semiconductor Device Modeling and Characterization Lecture 25 April 19, 2010 Professor Ronald L. Carter

2 MOSFET equivalent circuit elements
Fig 10.51* L25 04/19/10

3 n-channel enh. circuit model
G RG Cgd RDS Cgs S RD D Cbd RB Cbs Idrain Cgb DSS DSD RB B L25 04/19/10

4 MOS small-signal equivalent circuit
Fig 10.52* L25 04/19/10

5 MOSFET circuit parameters
L25 04/19/10

6 MOSFET circuit parameters (cont)
L25 04/19/10

7 Substrate bias effect on VT (body-effect)
L25 04/19/10

8 Body effect data Fig 9.9** L25 04/19/10

9 Fully biased n- channel VT calc

10 Values for fms with silicon gate

11 Q’d,max and xd,max for biased MOS capacitor
Fig 8.11** |Q’d,max|/q (cm-2) xd,max (microns) L25 04/19/10

12 I-V relation for n-MOS ohmic ID non-physical ID,sat saturated VDS,sat

13 MOS channel- length modulation
Fig 11.5* L25 04/19/10

14 Analysis of channel length modulation

15 Channel length mod- ulated drain char
Fig 11.6* L25 04/19/10

16 Associating the output conductance
ID ID,sat VDS,sat VDS L25 04/19/10

17 MOSFET circuit parameters
L25 04/19/10

18 Estimating LAMBDA L25 04/19/10

19 n-channel enhancement MOSFET in ohmic region
0< VT< VG e- channel ele + implant ion Channel VS = 0 0< VD< VDS,sat EOx,x> 0 n+ e-e- e- e- e- n+ Depl Reg p-substrate Acceptors VB < 0 L25 04/19/10

20 Subthreshold conduction
Below O.S.I., when the total band-bending < 2|fp|, the weakly inverted channel conducts by diffusion like a BJT. Since VGS>VDS, and below OSI, then Na>nS >nD, and electr diffuse S --> D Electron concentration at Source Concentration gradient driving diffusion L25 04/19/10

21 Subthreshold current data
Figure 10.1** Figure 11.4* L25 04/19/10

22 Mobility variation due to Edepl
Figures 11.7,8,9* L25 04/19/10

23 Velocity saturation effects
Figure 11.10* L25 04/19/10

24 SPICE mosfet Model Instance CARM*, Ch. 4, p. 290
L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m2] AS = Source A[m2] NRD, NRS = D and S diff in squares M = device multiplier L25 04/19/10

25 CARM*, Ch. 4, p. 99 L25 04/19/10

26 SPICE mosfet model levels
Level 1 is the Schichman-Hodges model Level 2 is a geometry-based, analytical model Level 3 is a semi-empirical, short-channel model Level 4 is the BSIM1 model Level 5 is the BSIM2 model, etc. L25 04/19/10

27 SPICE Parameters Level 1 - 3 (Static)

28 SPICE Parameters Level 1 - 3 (Static)
* 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate. L25 04/19/10

29 SPICE Parameters Level 1 - 3 (Q & N)

30 Level 1 Static Const. For Device Equations
Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case L25 04/19/10

31 Level 1 Static Const. For Device Equations
b = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) ISD = as given, or = JS*AD ISS = as given, or = JS*AS L25 04/19/10

32 Level 1 Static Device Equations
vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP/2*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds) L25 04/19/10

33 SPICE Parameters Level 2

34 SPICE Parameters Level 2 & 3

35 Level 2 Static Device Equations
Accounts for variation of channel potential for 0 < y < L For vds < vds,sat = vgs - Vfb - PHI + g2*[1-sqrt(1+2(vgs-Vfb-vbs)/g2] id,ohmic = [b/(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2g[vds+PHI-vbs)1.5-(PHI-vbs)1.5]/3 L25 04/19/10

36 Level 2 Static Device Eqs. (cont.)
For vds > vds,sat id = id,sat/(1-LAMBDA*vds) where id,sat = id,ohmic(vds,sat) L25 04/19/10

37 Level 2 Static Device Eqs. (cont.)
Mobility variation KP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)]UEXP This replaces KP in all other formulae. L25 04/19/10

38 SPICE Parameters Level 3

39 References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, 1995. M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993. **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986. *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997 L25 04/19/10


Download ppt "Professor Ronald L. Carter"

Similar presentations


Ads by Google