Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, 107001 (2011)

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
The Low-Temperature Specific Heat of Chalcogen- based FeSe J.-Y. Lin, 1 Y. S. Hsieh, 1 D. Chareev, 2 A. N. Vasiliev, 3 Y. Parsons, 4 and H. D. Yang 4 1.
The “normal” state of layered dichalcogenides Arghya Taraphder Indian Institute of Technology Kharagpur Department of Physics and Centre for Theoretical.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato,
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
SDW Induced Charge Stripe Structure in FeTe
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Spin dependent tunneling in junctions involving normal and superconducting CDW metals A.M. Gabovich and A.I. Voitenko (Institute of Physics, Kyiv, Ukraine)
Kinks, Nodal Bilyaer Splitting, and Interband Scattering in YBCO Sergey V. Borisenko “Self-organized Strongly Correlated Electron Systems” 29 May, 2006,
ARPES (Angle Resolved PhotoEmission Spectroscopy) Michael Browne 11/19/2007.
The Three Hallmarks of Superconductivity
Superconductivity of MgB2 Zhiping Yin Mar. 14, 2007 Final project of Advanced electronic structure course PHY250-6.
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Spin Meissner effect in superconductors and the origin of the Meissner effect J.E. Hirsch, UCSD Hvar, 2008  Why the Meissner effect is not understood,
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Itoh Lab. M1 Masataka YASUDA
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
Shimizu Lab. M1 Takuya Yamauchi
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Superconducting properties in filled-skutterudite PrOs4Sb12
Anisotropic Superconductivity in  -(BDA-TTP) 2 SbF 6 : STM Spectroscopy K. Nomura Department of Physics, Hokkaido University, Japan ECRYS-2008, Cargese.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Infrared and magneto- optical studies of topological insulators Saša V. Ðorđević Department of Physics.
Electrons on the brink: Fractal patterns may be key to semiconductor magnetism Ali Yazdani, Princeton University, DMR Princeton-led team of scientists.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Eliashberg Function in ARPES measurements Yu He Cuperates Meeting Dec. 3, 2010.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Pressure Dependence of Superconductivity of Iron Chalcogenides
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
ARPES studies of unconventional
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
Dept. of Physics, Yonsei U
New Materials and topological phases
Phase diagram of FeSe by nematic ultrafast dynamics
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
a b c d e f Calculation Experiment 111 Γ X
Observation of Intrinsic Quantum Well States and
Simple Stretch “Flips” the Sign of Charge Carriers
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Fig. 2 Observation of type II Weyl nodes in LaAlGe.
Presentation transcript:

Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011) Kitaoka Lab. Keisuke Yamamoto

Contents Introduction –Iron based superconductor Electronic structure –A x Fe 2-y Se 2 (A = K,Tl,Cs,Rb,etc.) Characteristic Experiment and result (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 –ARPES ( 角度分解光電子分光) –Fermi surface Summary Future work 2

Iron-based superconductor LaFeAsOBaFe 2 As 2 LiFeAs FeSe Fe As Se 1111 system122 system 111 system 11 system T c max = 55K T c max = 38K T c max = 18K T c max = 8K Fe-Pnictide layer Introduction Pnictgen(15 族元素 ) 3

Iron-based superconductor Introduction Band structure Fermi suface Phase diagram hole electron nesting hole electron electron scattering 4

hole Electron-dope Introduction Band structure εFεF k electron Electron-dope nesting Electron-dope Fermi suface E 5

A x Fe 2-y Se 2 Fe vacancyPhase diagram Band structure hole Fermi surface Qian et al, arXiv: v1 Dec (2010) M.H.Fang et al, EPL, 94 (2011) Motivation electron Fe-atom vacancy Absence of the hole band 6

Many differences from previous Iron-superconductor –Existence of Fe vacancies –Impossible for the electron scattering A x Fe 2-y Se 2 Why the T c is high (over 30K) ? Observe the electron structure of this sample by ARPES Motivation 7

(Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Experiment Tl,Rb Fe Se M.H.Fang et al, EPL, 94 (2011) H.D.Wang et al, EPL, 93 (2011)

one of the most direct and powerful methods of studying the electronic structure dispersive with the crystal momentum in strongly anisotropic systems ARPES (angle-resolved Photoemission Spectroscopy) crystal surface exiting light P in// = P out// measure both momentum and kinetic energy of the electrons photo emitted from a sample Experiment 9

Fermi surface Result D. Mou et al PRL 106, (2011) Two electronlike Fermi suface sheets, α and β around Γ D. Mou et al PRL 106, (2011) 10

hole g electron Fermi surface Result hole g Early report on KFeSe electron In this paper (Tl,Rb)FeSe Question : What is origin of the electronlike β band around Γ ? 3 possibilities Whether it could be a surface state Whether the β band can be caused by the folding of the electronlike γ surface near M Whether the measured β sheet is a Fermi surface at a special k z cut 11

Fermi surface Result D. Mou et al PRL 106, (2011) Superconducting gap Dash line is a BCS gap form Gap size The temperature dependence of the gap size roughly follows the BCS-type form 12

Fermi surface Result D. Mou et al PRL 106, (2011) β Fermi surface displays a clear superconducting gap The peculiar tiny α pocket near Γ, we do not find signature of clear superconducting gap opening 13

Super conducting gap D. Mou et al PRL 106, (2011) T =15K Result Fermi surface Gap size12±2 meV15±2 meV 911 Nearly isotropic gap Without gap nodes 3.52 (BCS) 14

Summary We have identified a distinct Fermi surface topology in the new (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 superconductor Near the Γ point, two electronlike Fermi surface sheets are observed hole g electron electron scattering Interband scattering between the electronlike Fermi surface sheet near Γ and electronlike Fermi surface sheet near M gives rise to electron pairing and superconductivity Interband scattering : バンド間散乱 15