Presentation is loading. Please wait.

Presentation is loading. Please wait.

ARPES studies of unconventional

Similar presentations


Presentation on theme: "ARPES studies of unconventional"— Presentation transcript:

1 ARPES studies of unconventional
superconductors Hong Ding Institute of Physics, Chinese Academy of Sciences Swiss architecture firm Herzog & de Meuron Heavy Fermion Physics Workshop, January 9, 2012

2 Phase diagrams pnictide SC heavy fermion SC organic SC cuprate SC

3 Fermi surface mapping of cuprates
Bi2Sr2CaCu2O8 Tight binding fitting Large FS, area = 1-x: Luttinger’s theorem

4 d-wave superconducting gap in cuprates
Half-Integer Flux Quantum Effect

5 Pseudogap in underdoped cuprates

6 Phase diagram of Ba122 system
Electron doping Hole doping Electron-hole asymmetry? M. Neupane et al., PRB 83, (2011)

7 ARPES observation of five bands and five FSs

8 Fermi surface evolution in “122”
Heavily OD Slightly OD OPT UD QAF Tc = 3 K Tc = 22 K Tc = 37 K Tc = 26 K Hole doping Parent UD OPT Heavily OD QAF TN = 135 K Tc = 0 K Tc = 11 K Tc = 25 K Tc = 0 K Electron doping

9 ARPES observation of superconducting gap
2/Tc ~ 7 H. Ding et al., EPL 83, (2008)

10 Nodeless SC gap in Ba0.6K0.4Fe2As2 (Tc = 37K)
H. Ding et al., EPL 83, (2008) K. Nakayama et al., EPL 85, (2009)

11 - + J1 – J2 model predicts almost isotropic s± gap +
Order parameters in momentum Space Real space configuration of pairing symmetry local interactions J1- J2 - + + pnictides: large J2 and FS topology favor D = D0 coskxcosky, s±-wave cuprates: large J1 and FS topology favor D = D0 (coskx–cosky)/2, d-wave K. Seo, A. B. Bernevig, J. Hu PRL 101, (2008)

12 Most weak-coupling theories predict anisotropic s± gap
D.H. Lee EPL 85, (2009) I. Mazin PRB 79, (2009) S. Graser NJP 11, (2009) when

13 overdoped Ba0.3K0.7Fe2As2 (Tc ~ 20K)
K. Nakayama et al., PRB 83, (R) (2011)

14 underdoped Ba0.75K0.25Fe2As2 (Tc = 26K)
Y.-M. Xu et al., Nature Communications 2, 392 (2011)

15 Doping dependence of the SC gaps in Ba1-xKxFe2As2
K. Nakayama et al., PRB 83, (R) (2011)

16 Electron doped BaFe1.85Co0.15As2 (Tc = 25.5K)
K. Terashima et al, PNAS 106, 7330 (2009)

17 kz dependence of SC gaps
single gap function Jab = 30 Jc = 5 D2/D1 ≈ Jc/Jab ≈ 0.17 Y.-M. Xu et al., Nature Physics 7, 198 (2011)

18 “111” - NaFe0.95Co0.05As (Tc = 18K) Z.-H. Liu et al., arXiv: , PRB

19 “11” - FeTe0.55Se0.45 (Tc = 13K)

20 J1 = -34 J2 = 22 J3 = 6.8 D2/D3 ≈ J2/J3 ≈ 0.3 H. Miao et al., arXiv:

21 (Tl,K)Fe2-xSe2 (Tc ~ 30K) T. Qian et al., PRL (2011)

22 Isotropic SC gap on electron FS
J1 < 0, FM, d-wave is not favored X.-P. Wang et al., EPL 93, (2011)

23 Selection Rules of Pairing Symmetry
Self-consistent meanfield equation for t-J model Overlap strength between pairing form factor and Fermi surface OS =

24 Three classes of high-Tc superconductors
J1 J2 J2+J3

25 Three classes of high-Tc superconductors
J1 J2 J2+J3

26 Summary The SC gap of all iron-based superconductors measured by ARPES can by described approximately by J1-J2-J3 model A possible unified paradigm of high-Tc superconductivity: local AFM magnetic exchange + collaborative FS topology J.-P. Hu and H. Ding, arXiv:


Download ppt "ARPES studies of unconventional"

Similar presentations


Ads by Google