Chapter 8 Protein synthesis.

Slides:



Advertisements
Similar presentations
Section Q – Protein synthesis
Advertisements

首 页 首 页 上一页 下一页 本讲内容 投影法概述三视图形成及其投影规律平面立体三视图、尺寸标注 本讲内容 复习: P25~P31 、 P84~P85 作业: P7, P8, P14[2-32(2) A3 (1:1)]
第八章 轴系零件 § 8-1 键、销及其连接 一、键连接 二、销连接 § 8-2 轴 一、轴的分类和应用 二、轴的结构和轴上零件的固定
Gene Structure, Transcription, & Translation
HistCite 结果分析示例 罗昭锋. By:SC 可能原因:文献年度过窄,少有相互引用.
实验:验证牛顿第二定律. 1 、实验目的:探究 a 与 F 、 m 的定量关系 2 、实验原理:控制变量法 A 、 m 一定时,探究 a 随 F 的变化关系 B 、 F 一定时, 探究 a 随 m 的变化关系.
Section O: RNA Processing and RNPs.Yang Xu, College of Life Sciences Section Q Protein Synthesis Q1 Aspects of Protein Q2 Mechanism of Protein Synthesis.
钠泵活动的生理意义 钠泵活动造成的细胞内高钾,是许多代谢 反应进行的必要条件 防止细胞内水肿的发生 建立一种势能贮备.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第六十二讲 ) 离散数学. 最后,我们构造能识别 A 的 Kleene 闭包 A* 的自动机 M A* =(S A* , I , f A* , s A* , F A* ) , 令 S A* 包括所有的 S A 的状态以及一个 附加的状态 s.
translation RBS RBS: ribosome binding site Ribosome(r RNA + r protein)
1 第 2 章 生命的化学特征 Chemical Properties of Life. 2 本章主要内容  组成生命有机体的元素  生物分子  生命有机体中的化学键  生物化学反应的能量来源  水在生命化学过程中的作用.
线性代数习题课 吉林大学 术洪亮 第一讲 行 列 式 前面我们已经学习了关 于行列式的概念和一些基本 理论,其主要内容可概括为:
数 学 系 University of Science and Technology of China DEPARTMENT OF MATHEMATICS 第 3 章 曲线拟合的最小二乘法 给出一组离散点,确定一个函数逼近原函数,插值是这样的一种手段。 在实际中,数据不可避免的会有误差,插值函数会将这些误差也包括在内。
聚合物在生物高分子分离中的应用 王延梅 中国科学技术大学高分子科学与工程系 Tel
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
Translation. Translation- the synthesis of protein from an RNA template. Five stages:Preinitiation Initiation Elongation Termination Post-translational.
第二节 免疫球蛋白及其遗传.
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
第九章 核糖体 Robinson & Brown ( 1953 )发现于植物细胞, Palacle ( 1955 )发现于动物细胞, Roberts ( 1958 )建 议命名为核糖核蛋白体( ribosome ),简称核糖体。核糖 体是所有类型的细胞内合成蛋白质的工厂,在一个旺盛生 长的细菌中,大约有.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
第 6 章 生物膜与物质运输 Biomembranes and cellular transportation.
吉林大学远程教育课件 主讲人 : 杨凤杰学 时: 64 ( 第五十三讲 ) 离散数学. 定义 设 G= ( V , T , S , P ) 是一个语法结构,由 G 产生的语言 (或者说 G 的语言)是由初始状态 S 演绎出来的所有终止符的集合, 记为 L ( G ) ={w  T *
RT-PCR 扬州大学 生物科学与技术学院. 背景介绍 DNA 存在于细胞核中并编码了基因 转录 : 双链 DNA 解链后利用其中一条链(编 码链)合成信使 RNA ( mRNA ) mRNA 从细胞核转移到细胞质中 mRNA 结合上核糖体开始翻译成蛋白质 蛋白执行基因的功能.
Chapter 22 (Part 2) Protein Synthesis. Translation Slow rate of synthesis (18 amino acids per second) In bacteria translation and transcription are coupled.
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
第 3 章 细胞的基本结构 第 2 节 细胞器 —— 系统内的分工合作. 细胞的结构 细胞质基质 细 胞 器细 胞 器.
Protein Synthesis: Translation of the Genetic Message
PROTEIN SYNTHESIS.
Protein synthesis.
Protein Biosynthesis By Amr S. Moustafa, M.D.; Ph.D.
Protein synthesis decodes the information in messenger RNA
Colinearity of Gene and Protein DNA RNA protein genotype function organism phenotype DNA sequence amino acid sequence transcription translation.
Protein Metabolism Protein Synthesis.
氧 族 元 素 第一课时. 氧族元素 包含元素 氧族元素包括 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧族元素。 它们的最外层电子、化学性质相似统称为.
《 UML 分析与设计》 交互概述图 授课人:唐一韬. 知 识 图 谱知 识 图 谱知 识 图 谱知 识 图 谱.
From RNA to protein Kanokporn Boonsirichai. The coding problem  How is the information in a linear sequence of nucleotides in mRNAs translated into the.
Protein Synthesis: Ch 17 From : Kevin Brown – University of Florida
The genetic code Nucleic acids Amino acids Correspondence = the genetic code Codon = triplet of three bases which encodes an amino acid 64 possible codons.
Medical Genetics & Genomics Guri Tzivion, PhD Extension 506 BCHM 590: Fall 2015 Windsor University School of Medicine.
1. 2 Permission Template (mRNA) Building blocks (20 types of aa) Ribosome tRNA Enzymes Energy (ATP & GTP) Protein factors What are needed for translation.
The translation of mRNA to protein can be examined in more detail
1 / 45 Chapter 1 Amino Acids to Proteins 1.1 Protein Composition 1.2 Protein Conformations 1.3 Protein Structure and Function: A Few Examples 1.4 The Dynamics.
动物的激素调节 大庆石油高级中学 怀颖. 一、动物的激素调节: 复习:体液的组成? 体液调节概念: 象激素、 CO2 、 H+ 、乳酸和 K+ 等通过体 液传送,对人和对动物的生理活动所进行的 调节称为体液调节,而激素相对于这些化学 物质的调节最为重要。
§10.2 对偶空间 一、对偶空间与对偶基 二、对偶空间的有关结果 三、例题讲析.
《 高中生命科学》 有丝分裂 澄衷高级中学 邓敏 2008 年 12 月. 人的胚胎发育过程 受精卵 个 体个 体.
Section Q Protein synthesis
Chapter Twelve Protein Synthesis: Translation of the Genetic Message
Translation.  Is the process in which mRNA provides a template for synthesis of polypeptide.
• Protein synthesis “Translation”
Chapter 7 Using the genetic code. 7.1 Introduction 7.2 Codon-anticodon recognition involves wobbling 7.3 tRNA contains modified bases that influence its.
力的合成 力的合成 一、力的合成 二、力的平行四边形 上一页下一页 目 录 退 出. 一、力的合成 O. O. 1. 合力与分力 我们常常用 一个力来代替几个力。如果这个 力单独作用在物体上的效果与原 来几个力共同作用在物体上的效 果完全一样,那么,这一个力就 叫做那几个力的合力,而那几个 力就是这个力的分力。
一、热机 1 、热机:利用燃料燃烧而工作的机器 2 、共同特点: 燃料的化学能 内能 机械能 燃烧 做功.
个体 精子 卵细胞 父亲 受精卵 母亲 人类生活史 问题:人类产生配子(精、卵 细胞)是不是有丝分裂?
Biosynthesis of protein (translation) 1. Materials involved in the translation (1) mRNA a. genetic code b. the category of genetic code.
The Flow of Genetic Information : DNARNA PROTEIN Transcription Translation.
逻辑设计基础 1 第 7 章 多级与(或)非门电路 逻辑设计基础 多级门电路.
Protein Metabolism CH353 April 3, 2008.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
欢 迎 使 用 《工程流体力学》 多媒体授课系统 燕 山 大 学 《工程流体力学》课程组. 第九章 缝隙流动 概述 9.1 两固定平板间的层流流动 9.2 具有相对运动的两平行平板 间的缝隙流动 9.3 环形缝隙中的层流流动.
第二节. 广告牌为什么会被风吹倒? 结构的稳定性: 指结构在负载的作用下 维持其原有平衡状态的能力。 它是结构的重要性质之一。
第九章 核糖体 Robinson & Brown ( 1953 )发现于植物 细胞。 Palacle ( 1955 )发现于动物细胞。 Roberts ( 1958 )建议命名为核糖核蛋白 ( ribosome ),简称核糖体。 核糖体是细胞内合成蛋白质的工厂,在 一个旺盛生长的细菌中,大约有
第十二章 维生素与辅酶 维生素是机体维持正常生命活动所必不可少的 一类有机物质。 维生素一般习惯分为脂溶性和水溶性两大类。 其中脂溶性维生素在体内可直接参与代谢的调 节作用,而水溶性维生素是通过转变成辅酶对 代谢起调节作用。 含量少,人体合成不足,需食物提供 缺乏会导致病变, 过多? 结构上无共性.
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
RNA processing and Translation. Eukaryotic cells modify RNA after transcription (RNA processing) During RNA processing, both ends of the primary transcript.
Protein Synthesis: Translation of the Genetic Message Mar. 8, 2016 CHEM 281.
Paul D. Adams University of Arkansas Mary K. Campbell Shawn O. Farrell Chapter Twelve Protein Synthesis:
Genetic Code Codons composed of three nucleotides in RNA Codon specifies amino acid or stop Genetic code is redundant.
Protein Synthesis (Translation)
Gene expression Translation
Presentation transcript:

Chapter 8 Protein synthesis

Protein synthesis Aspects of protein synthesis Mechanism of protein synthesis (Prokaryotic) Initiation in eukaryotes Translational control and post-translational events

8.1: Aspects of protein synthesis Codon-anticodon interaction Wobble (变偶性) Ribosome binding site Polysomes (多聚核糖体) Initiators tRNA

Codon-anticodon interaction In the cleft of the ribosome, an anti-parallel formation of three base pairs occurs between the codon on the mRNA and the anticodon on the tRNA.

Some highly purified tRNA molecules were found to interact with more than one codon, and this ability is correlated with the presence of modified nucleosides in the 5’-anticodon position, particularly inosine (次黄嘌呤)(formed by post-transcriptional processing of adenosine by anticodon deaminase)

To explain the redundancy of the genetic code To explain the redundancy of the genetic code. 18 aa are encoded by more than one triplet codons which usually differ at 5’-anticodin base Wobble 5'-anticodon base is able to undergo more movement than the other two bases and can thus form non-standard base pairs as long as the distances between the ribose units are close to normal.

All possible base pairings at the wobble position No purine-purine or pyrimidine-pyrimidine base pairs are allowed as ribose distances would be incorrect (Neat!). U is not found as 5’-anticodon base

Wobble pairing: non Waston-crick base paring

Ribosome binding site (Shine-Dalgarno sequence) Solely for prokaryotic translation A purine-rich sequence usually containing all or part of the sequence 5'-AGGAGGU-3' Upstream of the initiation codon in prokaryotic mRNA To position the ribosome for initiation of protein synthesis

Shine-Delgarno element

Polysomes Each mRNA transcript is read simultaneously by more than one ribosome.  A second, third, fourth, etc. ribosome starts to read the mRNA transcript before the first ribosome has completed the synthesis of one polypeptide chain. Multiple ribosomes on a single mRNA transcript are called polyribosomes or polysomes.  Multiple ribosomes can not be positioned closer than 80 nt.

Polysomes (多聚核糖体)

Electron micrographs of ribosomes actively engaged in protein synthesis revealed by "beads on a string" appearance. 

核糖体是蛋白质合成的部位 放射性同位素标记氨基酸注射小鼠,取肝脏制备亚细胞器,发现微粒体中放射性强度最高,证明核糖体是蛋白质合成的场所。 核糖体存在的形式: 基本类型 附着核糖体 游离核糖体 70S的核糖体 80S的核糖体 主要成分 r蛋白质:40%,核糖体表面 rRNA:60%,,核糖体内部

1 rRNA 小亚基: 16s RNA在识别mRNA上的多肽合成起始位点时起重要作用;SD sequence. 大亚基: 23s RNA存在一段与tRNAMet序列互补的片段。在23s RNA靠近5‘’端处,有一段序列(143-157nt)与5s RNA(72-83)结合。 5s RNA有两个保守区,一个有保守序列CGAAC,与tRNA上TC环相互作用。另一个保守序列与23s RNA互补。这是小亚基和大亚基的相互作用。

核糖体小亚单位rRNA的二级结构 (a) E.coli 16S rRNA;(红色为高度保守区) (b) 酵母菌18S rRNA,它们都具有类似的40个臂环结构(图中1~40),其长度和位置往往非常保守;P、E分别代表仅在原核或真核细胞存在的rRNA的二级结构。(Darnell et al.,1990)

2 核糖体蛋白 原核生物 30s 小亚基有21种蛋白,16s rRNA; 50s 大亚基有36种蛋白,5s和23s rRNA; 真核生物 60s 大亚基有49种蛋白,5s,5.8s, 28s rRNA;

原核生物与真核生物核糖体成分的比较

3 核糖核蛋白复合体 (b)及其在小亚单位上的部位  (引自Albert et al.,1989,图a; Lewin,1997,图b) E.coli (a)核糖体小亚单位中的部分r蛋白与rRNA的结合位点) (b)及其在小亚单位上的部位  (引自Albert et al.,1989,图a; Lewin,1997,图b)

4 原核生物的核糖体

5 真核生物的核糖体

Initiator tRNA Methionine (甲硫氨酸)is the first amino acids incorporated into a protein chain in both prokaryotes (modified to N-formylmethionine) and eukaryotes. Initiator tRNAs are special tRNAs recognizing the AUG (GUG) start codons in prokaryotes and eukaryotes. Initiator tRNAs differ from the one that inserts internal Met residues.

Initiator tRNA, fMet-tRNAfMet in E. coli Lacking alkylated A endorses more flexibility in recognition in base pairing (both AUG and GUG).

Initiator tRNA formation in E. coli Both initiator tRNA and noninitiator tRNAmet are charged with Met by the same methionyl-tRNA synthetase to give the methionyl-tRNA Only the initiator methionyl-tRNA is modified by transformylase to give N-formylmethionyl-tRNAfmet.

+ + First step: ATP links to AA O P O P H3N C C-O- + H R H3N C COO + H AARS Amino acid ATP Aminoacyl-AMP P P Second step: Aminoacyl-AMP reacts with tRNA O OH P H3N C C-O- + H R O OH AARS + Aminoacyl-AMP tRNA

O OH H3N C H + C R P AMP Aminoacyl-tRNA

原核细胞中起始氨基酸活化后,还要甲酰化,形成甲酰蛋氨酸tRNA,由N10甲酰四氢叶酸提供甲酰基。而真核细胞没有此过程。    运载同一种氨基酸的一组不同tRNA称为同功tRNA。一组同功tRNA由同一种氨酰基tRNA合成酶催化。氨基酰tRNA合成酶对tRNA和氨基酸两者具有专一性,它对氨基酸的识别特异性很高,而对tRNA识别的特异性较低。

8.2: Mechanism of protein synthesis (Prokaryote) Protein synthesis falls into three stages . 1.initiation-the assembly of a ribosome on an mRNA molecule. 2.elongation-repeated cycles of amino acid addition. 3.termination-the release of the new protein chain.

Initiation In prokaryotes, initiation requires the large and small ribosome subunits, the mRNA the initiator tRNA three initiation factors .

Size comparisons show that the ribosome is large enough to bind tRNAs and mRNA.

IF1 and IF3 bind to a free 30S subunits. IF2 complexed with GTP then bind to the small subunits, forming a complex at RBS. The initiator tRNA can then bind to the complex at the P site paired with AUG codon. 30S initiation complex The 50S subunits can now bind. GTP is then hydrolyzed and IFs are released to give the 70S initiation complex

The assembled ribosome has two tRNA-binding sites, which are called A- and P-site, for aminoacyl(氨酰基位点) and peptidyl sites(肽酰基位点) respectively. Only fMet-tRNAfMet can be used for initiation by 30S subunits; all other aminoacyl-tRNAs are used for elongation by 70S ribosomes.

Elongation With the formation of the 70S initiation complex, the elongation cycle can begin. Elongation involves the three factors, EF-Tu, EF-Ts, EF-G, as well as GTP, charged tRNA and the 70S initiation complex.

The three steps of elongation 1.Charged tRNA is delivered as a complex with EF-Tu and GTP .(进位反应) 2.Peptidyl tranferase (肽酰基转移酶)(50S ribosomal subunit) makes a peptide bond by joining the two adjacent amino acid without the input of more energy. (转肽反应) 3.Translocase (EF-G), with the energy from GTP, moves the ribosome one codon along the mRNA, ejecting the uncharged tRNA and transferred the ribosome peptide from the mRNA. (移位反应)

EF-Tu-Ts exchange cycle

Peptide bond formation takes place by reaction between the polypeptide of peptidyl-tRNA in the P site and the amino acid of aminoacyl-tRNA in the A site.

Translocation In bacteria, the discharged tRNA leaves the ribosome via another site, the E site. In eukaryotes, the discharged tRNA is expelled directly into the cytosol. EF-G (translocase) and GTP binds to the ribosome, and the discharged tRNA is ejected from the P-site in an energy consuming step. the peptigly-tRNA is moved from A-site to P-site and mRNA moves by one codon relative to the ribosome

Translocation in E. coli A-site P-site E-site Translocation in E. coli

Termination Protein factors called release factors interact with stop codon and cause release of completed polypeptide chain. RF1 and RF2 recognizes the stop codon with the help of RF3 The release factors make peptidyl transferase transfer the polypeptide to water, and thus the protein is released Release factors and EF-G: remove the uncharged tRNA and release the mRNA,.

8.3: Initiation in eukaryotes Most of the differences in the mechanism of protein between prokaryotes and eukaryotes occur in the initiation stage, where a greater numbers of eIFs and a scanning process are involed in eukaryotes. The eukaryotic initiator tRNA does not become N-formylated.

真核细胞蛋白质合成的起始   真核细胞蛋白质合成起始复合物的形成中需要更多的起始因子参与,因此起始过程也更复杂。   (1)需要特异的起始tRNA即,-tRNAfmet,并且不需要N端甲酰化。已发现的真核起始因子有近10种(eukaryote Initiation factor,eIF)   (2)起始复合物形成在mRNA5’端AUG上游的帽子结构,(除某些病毒mRNA外)

  (3)ATP水解为ADP供给mRNA结合所需要的能量。真核细胞起始复合物的形成过程是:翻译起始也是由eIF-3结合在40S小亚基上而促进80S核糖体解离出60S大亚基开始,同时eIF-2在辅eIF-2作用下,与Met-tRNAfmet及GTP结合,再通过eIF-3及eIF-4C的作用,先结合到40S小亚基,然后再与mRNA结合。

mRNA结合到40S小亚基时,除了eIF-3参加外,还需要eIF-1、eIF-4A及eIF-4B并由ATP小解为ADP及Pi来供能,通过帽结合因子与mRNA的帽结合而转移到小亚基上。但是在mRNA5’端并未发现能与小亚基18SRNA配对的S-D序列。目前认为通过帽结合后,mRNA在小亚基上向下游移动而进行扫描,可使mRNA上的起始密码AUG在Met-tRNAfmet的反密码位置固定下来,进行翻译起始。

prokaryotic eukaryotic function Initiation factor IF1 IF3 IF2 eIF3 eIF4c eIF6 eIF4B eIF4F eIF2B eIF2 eIF5 Bind to ribosome submits Bind to mRNA Initiator tRNA delivery Displacement of other factors Elongation factor EF-Tu EF-Ts EF-g eEF1α eEF1βγ eEF2 Aminoacyl tRNA delivery Recycling of EF-Tu or eEF1α Translocation Termination factors RF1, RF2, RF3 eRF Polypeptides Chain release

Scanning The eukaryotic 40s ribosome submit complex bind to the 5’cap region of the mRNA and moves along it scanning for an AUG start codon.

Eukaryotic ribosomes migrate from the 5’ end of mRNA to the ribosome binding site, which includes an AUG initiation codon.

Initiation In contrast to the events in prokaryotes, initiation involves the initiation tRNA binding to the 40S subuits before it can bind to the mRNA. Phosphorylation of eIf2, which delivers the initiation tRNA, is an important control point.

The initiation factor can be grouped to there function as follow Binding to ribosomal subunits eIF6 eIF3 eIF4c Binding to the mRNA eIF4B eIF4F eIF4A eIF4E Involved in initiation tRNA delivery eIF2 eIF2B Displace other factors eIF5

Initiator tRNA+eIF2+GTP eIF3+4C+40S Ternary complex + 43S ribosome complex 43S preinitiation complex ATP +mRNA+eIF4F+eIF4B ADP+Pi 48S preinitiation complex

Scanning More factors involved

Scanning to find AUG

Elongation The protein synthesis elongation cycle in prokaryotes and eukaryotes is quite similar. The factors EF-Tu EF-Ts EF-G have direct eukaryotic equivalents called eEF1α eEF1βγ eEF2

Termination Eukaryotes use only one release factors eRF, which requires GTP,recognize all three termination codons. Termination codon is one of three (UAG, UAA, UGA) that causes protein synthesis to terminate.

8.4: Translational control and post-translational events Polyproteins Protein targeting Protein modification Protein degradation

Translational control In prokaryotes, the level of translation of different cistrons can be affected by: (a) the binding of short antisense molecules, (b) the relative stability to nucleases of parts of the polycistronic mRNA , (c) the binding of proteins that prevent ribosome access.

In eukaryotes, protein binding can also mask the mRNA and prevent translation, repeats of the sequence 5'-AUUUA -3' can make the mRNA unstable and less frequently translated.

Polyprotein A single translation product that is cleaved to generate two or more separate proteins is called a polyprotein. Many viruses produce polyprotein.

Protein targeting The ultimate cellular location of proteins is often determined by specific, relatively short amino acid sequence within the proteins themselves. These sequences can be responsible for proteins being secreted, imported into the nucleus or targeted to other organelles.

Prokaryotic protein targeting: secretion

Eukaryotic protein targeting Targeting in eukaryotes is necessarily more complex due to the multitude of internal compartments: There are two basic forms of targeting pathways 2. 1.

The secretory pathway in eukaryotes (co-translational targeting)

The signal sequence of secreted proteins causes the translating ribosome to bind factors that make the ribosome dock with a membrane and transfer the protein through the membrane as it is synthesized. Usually the signal sequence is then cleaved off by signal peptidase.

Protein modification Cleavage: To remove signal peptide To release mature fragments from polyproteins To remove internal peptide as well as trimming both N-and C-termini

Covalent modification: Acetylation; Hydroxylation; Phosphorylation; Methylation; Glycosylation; Addition of nucleotides.

Phosphorylation

Protein degradation Different proteins have very different half-lives. Regulatory proteins tend to turn over rapidly and cells must be able to dispose of faulty and damaged proteins.

Protein degradation: process Faulty and damaged proteins are attached to ubiquitins (ubiquitinylation). The ubiquitinylated protein is digested by a 26S protease complex (proteasome) in a reaction that requires ATP and releases intact ubiquitin for re-use.

In eukaryotes, it has been discovered that the N-terminal residue plays a critical role in inherent stability. 8 N-terminal aa correlate with stability: Ala Cys Gly Met Pro Ser Thr Val 8 N-terminal aa correlate with short t1/2: Arg His Ile Leu Lys Phe Trp Tyr 4 N-terminal aa destabilizing following chemical modification: Asn Asp Gln Glu