CHAPTER 13 RNA and Protein Synthesis. Differences between DNA and RNA  Sugar = Deoxyribose  Double stranded  Bases  Cytosine  Guanine  Adenine 

Slides:



Advertisements
Similar presentations
RNA and Protein Synthesis
Advertisements

RNA and PROTEIN SYNTHESIS
RNA.
Chapter 13- RNA and Protein Synthesis
RNA and Protein Synthesis
Chapter 13: RNA and Protein Synthesis
Understanding Protein Synthesis
RNA and Protein Synthesis
10-2: RNA and 10-3: Protein Synthesis
What organic molecule is DNA? Nucleic Acid. An organic molecule containing hydrogen, oxygen, nitrogen, carbon, and phosphorus Examples: DNA ???? RNA.
RNA Ribonucleic Acid.
RNA & Protein Synthesis Intro Genes code DNA instructions that control the production of proteins within the cell. Genes The first step in decoding.
Ribonucleic Acid (RNA) & Protein Synthesis Ms. Napolitano & Mrs. Haas CP biology.
Lesson Overview 13.1 RNA.
Review Describe the three main difference between RNA and DNA
13.1 RNA.
RNA and Protein Synthesis
RNA and Protein Synthesis
RNA AND PROTEIN SYNTHESIS RNA vs DNA RNADNA 1. 5 – Carbon sugar (ribose) 5 – Carbon sugar (deoxyribose) 2. Phosphate group Phosphate group 3. Nitrogenous.
VII RNA and Protein Synthesis
RNA Structure and Transcription Mrs. MacWilliams Academic Biology.
Chapter 13.1 and 13.2 RNA, Ribosomes, and Protein Synthesis
RNA Ribonucleic Acid. Structure of RNA  Single stranded  Ribose Sugar  5 carbon sugar  Phosphate group  Adenine, Uracil, Cytosine, Guanine.
12-3 RNA and Protein Synthesis
RNA and Protein Synthesis Honors Biology. RNA Ribonucleic acid – Made of nucleotides, similar to DNA Consist of 5 carbon sugar—Ribose Phosphate group.
RNA & DNA Compare RNA & DNA Contrast RNA & DNA
RNA AND PROTEIN SYNTHESIS
Lesson Overview Lesson OverviewFermentation Lesson Overview 13.1 RNA.
RNA & Protein Synthesis
Nucleic Acids Comparing DNA and RNA. Both are made of nucleotides that contain  5-carbon sugar,  a phosphate group,  nitrogenous base.
Lesson Overview Lesson OverviewFermentation Lesson Overview 13.1 RNA.
Ch Gene  Protein A gene is a sequence of nucleotides that code for a polypeptide (protein) Hundreds-thousands of genes are on a typical chromosome.
PROTEIN SYNTHESIS TRANSCRIPTION AND TRANSLATION. TRANSLATING THE GENETIC CODE ■GENES: CODED DNA INSTRUCTIONS THAT CONTROL THE PRODUCTION OF PROTEINS WITHIN.
Protein Synthesis RNA, Transcription, and Translation.
13.1 RNA 13.2 Ribosomes & Protein Synthesis
Chapter 13 – RNA & Protein Synthesis MS. LUACES HONORS BIOLOGY.
Gene Expression DNA, RNA, and Protein Synthesis. Gene Expression Genes contain messages that determine traits. The process of expressing those genes includes.
12-3 RNA and Protein Synthesis Page 300. A. Introduction 1. Chromosomes are a threadlike structure of nucleic acids and protein found in the nucleus of.
Chapter 13- RNA and Protein Synthesis
Chapter 13.1: RNA Essential Questions
Lesson Overview 13.1 RNA.
Lesson Overview 13.1 RNA.
RNA & Protein synthesis
From DNA to Proteins Lesson 1.
12-3 RNA and Protein Synthesis
Lesson Overview 13.1 RNA.
RNA Ribonucleic Acid.
12-3 RNA and Protein Synthesis
RNA Ribonucleic Acid.
Lesson Overview 13.1 RNA Objectives: Contrast RNA and DNA.
What is RNA? Do Now: What is RNA made of?
12-3 RNA and Protein Synthesis
RNA and Protein Synthesis
Central Dogma Central Dogma categorized by: DNA Replication Transcription Translation From that, we find the flow of.
Lesson Overview 13.1 RNA
12-3 RNA and Protein Synthesis
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Comparing RNA and DNA Each nucleotide in both DNA and RNA is made up of a 5-carbon sugar, a phosphate group, and a nitrogenous base. There are three important.
12-3 RNA and Protein Synthesis
Lesson Overview 13.1 RNA.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Lesson Overview 13.1 RNA.
Lesson: RNA Key Questions: How does RNA differ from DNA?
Lesson Overview 13.1 RNA.
Lesson Overview 13.1 RNA.
DNA Deoxyribonucleic Acid.
Presentation transcript:

CHAPTER 13 RNA and Protein Synthesis

Differences between DNA and RNA  Sugar = Deoxyribose  Double stranded  Bases  Cytosine  Guanine  Adenine  Thymine  Sugar = Ribose  Single Stranded  Bases  Cytosine  Guanine  Adenine  URACIL (U) DNARNA These chemical differences make it easy for the enzymes in the cell to tell DNA and RNA apart

What is RNA?  Remember that DNA carries the genetic information in cells  RNA = a single-stranded nucleic acid that contains ribose as its sugar  RNA is involved in putting the genetic information into action!!!  The instructions from DNA are copied as RNA. RNA can be used to make proteins

The role of DNA and RNA in the cell  The roles played by DNA and RNA are similar to the master plans and blueprints used by builders.  DNA = The master plan = has all the information needed to construct a building. Builders never bring a valuable master plan to the building site!!!!!  RNA = Blueprint = Inexpensive, disposable copies of the master plan called blueprints.

The 3 main types of RNA  Messenger RNA (mRNA)  Carry a copy of the instructions from the nucleus to other parts of the cell  Ribosomal RNA (rRNA)  Makes up the structure of ribosomes  Transfer RNA (tRNA)  Transfers amino acids (proteins) to the ribosomes to be assembled

A 4 th type of RNA (not in your book)  Small nuclear RNA (snRNA)  Edits the mRNA before it leaves the nucleus  The mRNA may be edited in many ways which will code for many different proteins!!!! (THIS IS NEW RESEARCH)  snRNA is found in the nucleus with proteins called snRNP (small ribonucleoproteins). The the snRNP-snRNA complexes are called splicesomes.

How is RNA made?  Transcription = DNA segments serve as templates to produce complementary RNA molecules (mRNA)  In eukaryotes transcription takes place in the nucleus  mRNA is the disposable copy of the DNA instructions  Many mRNA molecules can be made from one gene

Bozeman Biology Transcription and Translation  Click here for Bozeman Biology Transcription and Translation Click here for Bozeman Biology Transcription and Translation

The role of RNA polymerase  RNA polymerase = an enzyme that binds to DNA  1) Separates the DNA strand  2) Uses one DNA strand as a template to create a RNA molecule  Promoter = region of DNA with specific base sequences that signal the RNA polymerase where to start making RNA  mRNA is edited before it leaves the nucleus  Introns = regions that are cut out  Exons = regions that form the final RNA

RNA editing  Biologists don’t have a complete answer as to why cells use energy to make a large RNA molecule and then throw parts of that molecule away.  Some pre-mRNA molecules may be cut and spliced in different ways in different tissues, making it possible for a single gene to produce several different forms of RNA.  Introns and exons may also play a role in evolution, making it possible for very small changes in DNA sequences to have dramatic effects on how genes affect cellular function.  2 minute transcription animation 2 minute transcription animation  2 minute translation animation2 minute translation animation

The Genetic Code  The bases in DNA and RNA - A, C, G, T (U) code for making proteins  The 4 bases code for 20 different amino acids (proteins)  The genetic code is read three “letters” at a time, so that each “word” is three bases long and corresponds to a single amino acid  These amino acids can be combined into long chains = polypeptides  The sequence of amino acids determines the structure of the protein

Codon  Codon = each three-letter “word” in mRNA consists of three consecutive bases that specify a single amino acid to be added to the polypeptide chain

The Genetic Code  There are 64 possible three- base codons (4 × 4 × 4 = 64) in the genetic code.  To read a codon, start at the middle of the circle and move outward.  GAG = Glutamic Acid  CGU = Arginine  Start codon = AUG = methionine  Stop codon = UGA, UAA, UAG

Translation  Translation = the decoding of an mRNA message into a protein.  Ribosomes use the sequence of codons in mRNA to assemble amino acids into polypeptide chains

tRNA  Each tRNA molecule carries just one kind of amino acid.  Anticodon = three unpaired bases—which is complementary to one mRNA codon.

The process of translation 1) A ribosome attaches to a mRNA molecule in the cytoplasm. 2) As the ribosome reads each codon of mRNA, it directs tRNA to bring the specified amino acid into the ribosome. 3) One at a time, the ribosome then attaches each amino acid to the growing chain and breaks the bond between the tRNA and amino acid

Translation 4) The tRNA moves into a third binding site, from which it exits the ribosome. 5) The ribosome moves to the third codon, where tRNA brings it the amino acid specified by the third codon.

Translation 6) The polypeptide chain continues to grow until the ribosome reaches a “stop” codon on the mRNA molecule. 7) When the ribosome reaches a stop codon, it releases both the newly formed polypeptide and the mRNA molecule, completing the process of translation. 2 minute translation animation

Central Dogma  Information is transferred from DNA to RNA to PROTEIN  Exceptions include retroviruses (ex HIV) where information is moved from RNA to DNA  Gene expression - the way in which DNA, RNA, and proteins are involved in putting genetic information into action in living cells.

The Genetic Code  The genetic code is near-universal  Some organisms show slight variations in the amino acids assigned to particular codons but the code is always read three bases at a time and in the same direction.

Mutations  Mutations are heritable changes in genetic information  There are two categories of mutations 1) Gene mutations = mutations that produce changes in a single gene 2) Chromosomal mutations = mutations that produce changes in whole chromosomes

Gene Mutations  Point mutations = mutations that involve changes in one or a few nucleotides Occur at a single point in the DNA sequence Usually occur during replication.  If a gene in one cell is altered, the alteration can be passed on to every cell that develops from the original one.

Types of Gene Mutations  Substitution - one base is changed to a different base  May change one amino acid  Insertion – one base in inserted  Deletion – one base is deleted  Insertion and deletions are frameshift mutations – they shift the reading frame of the message and change multiple amino acids

Chromosomal Mutations  Deletion – involves the loss of part of a chromosome  Duplication – involves an extra copy of part or all of the chromosome  Inversion – reverses the direction of part of the chromosome  Translocation – when part of one chromosome breaks off and attaches to another