February, 12 2006INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

GUINEA-PIG: A tool for beam-beam effect study C. Rimbault, LAL Orsay Daresbury, April 2006.
March, 11, 2006 LCWS06, Bangalore, India Very Forward Calorimeters readout and machine interface Wojciech Wierba Institute of Nuclear Physics Polish Academy.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
P hysics background for luminosity calorimeter at ILC I. Božović-Jelisavčić 1, V. Borka 1, W. Lohmann 2, H. Nowak 2 1 INN VINČA, Belgrade 2 DESY, Hamburg.
Summary of wg2a (BDS and IR) Deepa Angal-Kalinin, Shigeru Kuroda, Andrei Seryi October 21, 2005.
Pair backgrounds for different crossing angles Machine-Detector Interface at the ILC SLAC 6th January 2005 Karsten Büßer.
“GLD” Detector Concept Study 21. Mar. Y. Sugimoto KEK.
Backgrounds and Forward Region Backgrounds and Forward Region FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle HH-Zeuthen-LC-Meeting Zeuthen September.
ILC BCD Crossing Angle Issues G. A. Blair Royal Holloway Univ. London ECFA ILC Workshop, Vienna 14 th November 2005 Introduction BCD Crossing Angle Rankings.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Octobre MPI Munich -energy calibration and resolution (end 2006) -Implementaion in LDC/Mokka (end 2006) -realistic simulation (2007) -background.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
Karsten Büßer Beam Induced Backgrounds at TESLA for Different Mask Geometries with and w/o a 2*10 mrad Crossing Angle LCWS 2004 Paris April 19 th 2004.
September, TAU FCAL Worlshop in Tel Aviv W. Lohmann, DESY Why a e + e - Collider Physics essentials The Snowmass Adventure Where we are with FCAL.
Octobre MPI Munich FCAL Workshop in Munich W. Lohmann, DESY The 14 mrad X-angle, two IPs The push-pull option The next calendar dates Where we are.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.
Analysis of Beamstrahlung Pairs ECFA Workshop Vienna, November 14-17, 2005 Christian Grah.
LDC Meeting Vienna 17. November 2005 Karsten Büßer LDC Machine Detector Interface Update.
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
1 Snowmass2005 report 2005/09/26 H. Matsunaga GLDCAL meeting.
Instrumentation of the very forward region of the TESLA detector – summary of the Workshop on Forward Calorimetry and Luminosity Measurement, Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
September, 19 FCAL Worlshop in Tel Aviv W. Lohmann, DESY Physics Requirements Input From Theory Lessons from LEP LumiCal Simulations BeamCal.
February 13. FCAL Workshop in Cracow W. Lohmann, DESY Bunch charge effects and diff. Bhabha cross section News From Theory and Generator Diamond.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Jan. 17, 2005JINR Dubna BMBF Detector R&D for the ILC W. Lohmann, DESY e + e - Collider 500 GeV – 1 TeV Fixed and tunable CMS energy Clean Events Beam.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
1 Some results from LumiCal Monte Carlo Studies Michał Karbowiak, B. Pawlik, L. Zawiejski Michał Karbowiak (*), B. Pawlik, L. Zawiejski Institute of Nuclear.
December 7, 2005DESY EUDET in FCAL VINCA, Belgrade Univ. of Colorado, Boulder, BNL, Brookhaven, AGH Univ., INP & Jagiell. Univ. Cracow, JINR, Dubna, NCPHEP,
August DESY-HH VFCAL Report W. Lohmann, DESY Infrastructure for sensor diagnostics FE Electronics Development Sensor test facilities Laser Alignment.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
Status of Forward Calorimetry R&D: Report from the FCAL Collaboration Bruce A. Schumm Santa Cruz Institute for Particle Physics University of California,
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
Systematic limitations to luminosity determination in the LumiCal acceptance from beam-beam effects C. Rimbault, LAL Orsay LCWS06, Bangalore, 9-13 March.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
LumiCal background and systematics at CLIC energy I. Smiljanić, Vinča Institute of Nuclear Sciences.
Boogert and Miller; Luminosity Measurement questions; calorimeter-related. 1 Luminosity Measurement questions; calorimeter-related Stewart Takashi Boogert.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
HEP Tel Aviv University Lumical R&D progress report Ronen Ingbir ECFA - Durham2004 Lumical - A Future Linear Collider detector.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
FCAL Krakow meeting, 6. May LumiCal concept including the tracker R. Ingbir, P.Růžička, V. Vrba.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Octobre LAL Orsay Report from the IRENG07 workshop at SLAC W. Lohmann, DESY from Septembre 17 – 21, ~ 100 participants - plenary and parallel sessions.
FCAL Takashi Maruyama SLAC SiD Workshop, 15 – 17 November, 2010, Eugene, Oregon.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Luminosity Measurement using BHABHA events
Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell. Univ. Cracow,
Layout of Detectors for CLIC
Summary of the FCAL Workshop Cracow, February 12-13
BDIR/MDI Summary ECFA Final Plenary
Testbeam plans for LEP instrumentation
Report about “Forward Instrumentation” Issues
Conlusions of the Cracow Meeting
Presentation transcript:

February, INP PAN FCAL Workshop in Cracow W. Lohmann, DESY The BCD (Baseline Configuration Document) The next calendar dates Where we are with FCAL

February, INP PAN The BCD Executive Committee for Baseline Configuration GDE Director Barish Regional Directors Dugan – Americas Foster – Europe Takasaki – Asia Accelerator Leaders Yokoya - Asia Raubenheimer - Americas Walker - Europe Responsible for decisions and documentation for the Baseline Configuration Document (BCD) GDE Executive Committee

February, INP PAN ILC Parameters

February, INP PAN The BCD The Baseline Machine (500GeV) The 1 TeV upgrade

February, INP PAN 2 Interaction Regions Two Detectors, because : Confirmation and redundancy Complementary Collider options Competition Efficiency, reliability Historical lessons We have to contimue with two design options! 2 mrad and 20 mrad

February, INP PAN GDE groups Machine design, Cost ….. Siting, civil construction ……. Physics, Detectors - J. Brau (America) - F. Richard (Europe) - H. Yamamoto (Asia) ………. Area subsystem leads A. Seryi, H. Yamamoto (MDI panel) D. Angal-Kalinin Beam delivery system

February, INP PAN The next calendar dates EUDET kick-off meeting in Hamburg, February LCWS Bangalore, March Physics Research Committee, May ECFA WS, Valencia, November, 2006 We have to present our plan for the next 4 years LDC outline document, presentations A written report and a presentation are expected prepare ourselfs, FCAL meeting before?

February, INP PAN Where are we with FCAL -We worked out an advanced design for zero or small crossing angle; -this was accepted and acknowledged in Snowmass and Vienna (Several talks by H. Abramowicz, K. Afanaciev, C.Grah,V.Drugakov, A.Elagin, B. Pawlik, A. Sapronov) -the performance (resolutions, efficiencies, biasas) are understood from simulations for partly realistic detectors -the backscattered background ( into the central detector part) is estimated - Some studies are done for the 20 mrad version (beamstrahlung background, systematics of beamposition)

February, INP PAN Fast Beam Diagnostics Detection of Electrons and Photons at very low angle – extend hermeticity IP VTX Measurement of the Luminosity with precision (<10 -3 ) using Bhabha scattering BeamCal FTD L* = 4m 300 cm LumiCal: 26 <  < 82 mrad BeamCal: 4 <  < 28 mrad PhotoCal: 100 <  < 400  rad Very Forward Detectors Beamstrahlung Depositions: 20 MGy/year Rad. hard sensors e.g. Diamond/W BeamCal LumiCal Silicon/W sandwich R&D for ILC (DESY PRC R&D 02/01): Instrumentation of the Very Forward Region of the ILC Detector BeamCal

February, INP PAN A few topics to be thought Selection of Bhabha events: Energy selection cut At which energy this cut has to be put? -Theoretical uncertainty -Energy scale uncertainty

February, INP PAN A few topics to be thought The Bhabha cross section depends on the polarisation How well is this understood? -higher order corrections - considered in the Monte Carlo

February, INP PAN A few topics to be thought Electron detection efficiency: Algorithm relies on constant bunch charge Look on Dumping Rings How stable is this mechanism? -Bunch-to-bunch fluctuations (Contact to machine people )

February, INP PAN 20 mrad design Changes within LDC: -TPC is shorter -HCAL should cover smaller angles -LumiCal aligned with or in front of ECAL -Montage-friendly -Background on LumiCal ? - Background in the inner Detector?

February, INP PAN What has to be done: We need a design for 20 mrad crossing angle -new geometry -repetition of many simulations -studies of backgrounds, beamstrahlung, backscattered into the central detector We have to understand Bhabha phenomenology in more details -Status of the theory and generators - How influence radiative effects for a given detector the uncertainty of the measurement - Optimised segmentation/structure for LumiCal - Realistic readout scheme

February, INP PAN What has to be done: Sensor and Readout -Continuation of diamond studies (more samples with promising diagnostics, linearity, homogeneity, high radiation doses.) -Si sensor studies (to learn to work with them). -Si sensor radiation test. -Assembly of full sensor planes  prototype test. -Readout electronics design for the prototype O(1000) channels. -Concept for the readout electronics -Concept Design for the ‘fast readout’ and fast diagnostics (related to Eurotev).

February, INP PAN This meeting at INP -Reports on many topics mentioned -Discussions on ‘critical’ Issues 20 mrad design more realistic simulations prototyps and testbeam electronics concept preparation of the EUDET kick-off meeting Lets make a WORKshop and see at the end where we’ll go