Presentation is loading. Please wait.

Presentation is loading. Please wait.

Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah.

Similar presentations


Presentation on theme: "Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah."— Presentation transcript:

1 Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah

2 9/19/2005Ch.Grah: Beamdiagnostics2 Outline  Very Forward Calorimetry of LDC,  LumiCal  PhotoCal  BeamCal  Fast luminosity monitoring  Beam diagnostics from beamstrahlung  analyzing pairs and photons  20 mrad crossing angle  Summary & outlook

3 9/19/2005Ch.Grah: Beamdiagnostics3 Very Forward Region LumiCal: 26 < θ < 82 mrad BeamCal: 4 < q < 28 mrad PhotoCal: 100 < q < 400 μrad

4 9/19/2005Ch.Grah: Beamdiagnostics4 Very Forward Calorimeters  LumiCal:  Precise measurement of the luminosity by using bhabha events (very high mechanical precision needed).  Extend coverage of the detector system.  Photocal  beam diagnostics from beamstrahlung photons  BeamCal:  detection of electrons/photons at low angle.  shielding of Inner Detector.  beam diagnostics from beamstrahlung electrons/positron pairs.

5 9/19/2005Ch.Grah: Beamdiagnostics5 BeamCal: Beam Diagnostics and Fast Luminosity Monitoring  15000 e + e - per BX => 10 – 20 TeV  ~ 10 MGy per year  “fast” => O(μs)  Direct photons for  < 400  rad (PhotoCal) e + e - pairs from beamstrahlung are deflected into the BeamCal e+e+ e-e- Deposited energy from pairs at z = +365 (no B-field, TESLA parameters)

6 9/19/2005Ch.Grah: Beamdiagnostics6 Distribution of pairs B z =4T B z =4T/2mrad

7 9/19/2005Ch.Grah: Beamdiagnostics7 BeamCal: W-Diamond Sandwich Length = 30 X 0 (3.5mm W +.5mm diamond sensor) ~ 15 000 channels ~1.5/2 cm < R < ~10(+2) cm Space for electronics

8 9/19/2005Ch.Grah: Beamdiagnostics8 Fast Luminosity Monitoring A fast estimation of the luminosity is needed, e.g. number of pairs/total energy.  This will be included into the fast feedback system. Luminosity development during first 600 bunches of a bunch-train. L total = L(1-600) + L(550600)*(2820-600)/50 G.White QMUL/SLAC RHUL & Snowmass presentation position and angle scan

9 9/19/2005Ch.Grah: Beamdiagnostics9 L Improvement by including Pair Signal position scan position scan & angle scan 350 GeV 500 GeV Up to 14.8 % improvement on the overall luminosity. A fast luminosity signal is a must have for the ILC. G.White

10 9/19/2005Ch.Grah: Beamdiagnostics10 Beamstrahlung Pairs  Observables (examples):  total energy  first radial moment  thrust value  angular spread  E(ring ≥ 4) / Etot  E / N  left/right, up/down, forward/backward asymmetries detector: realistic segmentation, ideal resolution bunch by bunch resolution

11 9/19/2005Ch.Grah: Beamdiagnostics11 Aim: Reconstruction of Beam Parameters Sigma x Sigma y Sigma z Sigma x' Sigma y' x offset y offset x' offset y' offset x-waist shift y-waist shift Bunch rotation N particles/bunch Banana shape … … Luminosity What do you want to know?

12 9/19/2005Ch.Grah: Beamdiagnostics12 Analysis Concept Observables Δ BeamPar Taylor Matrix nom = + * Beam Parameters determine collision creation of beamstr. creation of e + e - pairsguinea-pig(D.Schulte) Observables characterize energy distributions in detectorsFORTRAN analysis program (A.Stahl) 1 st order Taylor- Exp. Solve by matrix inversion (Moore-Penrose Inverse)

13 9/19/2005Ch.Grah: Beamdiagnostics13 beam parameter i [au] observable j [au] parametrization (polynomial) Slopes 1 point = 1 bunch crossing by guinea-pig slope at nom. value  taylor coefficient i,j

14 9/19/2005Ch.Grah: Beamdiagnostics14 Test with non-nominal bunches: e - e + nom. bunch size x: 575nm 575nm 553nm bunch size y: 5nm 7nm 5nm bunch size z: 290 μ m 320 μ m 300 μ mAnalysis

15 9/19/2005Ch.Grah: Beamdiagnostics15 σxσx σyσy σzσz Δσ x Δσ y Δσ z 0.3 %0.4 %3.4 %9.5 %1.4 %0.8 % 0.3 % 0.4 %3.5 % 11 % 1.5 % 0.9 % 0.9 % 1.0 % 11 % 24 % 5.7 % 24 % 1.6 % 1.9 % 1.8 % 1.1 % 16 % 27 % 3.2 % 2.1 % Multi Parameter Analysis

16 9/19/2005Ch.Grah: Beamdiagnostics16 2nd Order Calculations G.White Fast feedback system group (QMUL) is studying higher order dependencies. Computation of Taylor Matrix only to second order, due to cpu limitations: 2nd order requires 7 days on 100 CPU cluster. This effort aims for an offline analysis/fitting routine.

17 9/19/2005Ch.Grah: Beamdiagnostics17 Photons from Beamstrahlung Andrei Rybin (Protvino)  Report on analysis done by Andrei Rybin (Protvino)  Beam parameters under investigation:  beam size σ x, σ y, σ z  beam offset x,y  waist shift x,y  Observables  E γ (left – right) along x  E γ (up – down) along y  E γ (forward – backward) along z Every beam parameter analyzed separately, all others were fixed to nominal value.

18 9/19/2005Ch.Grah: Beamdiagnostics18 Interlude: Photon Distribution and Selection Photon selection: |angle x| > 0.2 mrad |angle y| > 0.1 mrad E tot =3366.83 TeV In use: Multi layer perceptron feed-forward network. 200 Epochs for learning hybrid linear BFGS learning method

19 9/19/2005Ch.Grah: Beamdiagnostics19 Vertical Beam Waist Variation nominell beam parameters vert. waist shift > 0 vert. waist shift < 0

20 9/19/2005Ch.Grah: Beamdiagnostics20 Results of Analysis Parameternom.inphot.pairs  σ x 553nm4.21.5  σ y 5.0nm0.10.2  σ z 300μm7.54.3  beam offset x0nm4.06.0  beam offset y0nm0.160.4  vertical waist shift360μm1424

21 9/19/2005Ch.Grah: Beamdiagnostics21 Moving to 20mrad crossing angle Simplification of DID field map (B.Parker & A.Seryi)

22 9/19/2005Ch.Grah: Beamdiagnostics22 20mrad crossing angle  20mrad crossing angle and serpentine B-field implemented. |B| = 4T, serpentine field, 20mrad

23 9/19/2005Ch.Grah: Beamdiagnostics23 Geometry for 20mrad mirrored

24 9/19/2005Ch.Grah: Beamdiagnostics24 Beamdiagnostics for 20mrad  Simulate collision/beamstrahlung with Guineapig using head-on case.  Use FORTRAN code by A.Stahl - extended by  Boosting the generated pairs according to crossing angle.  Calculate impact position at BeamCal front face by parameterized movement in constant b-field.  Use new geometries (headon, 2mrad, 20mrad).  Used old set of observables (space for improvements).

25 9/19/2005Ch.Grah: Beamdiagnostics25 Single Parameter Analysis for 20mrad Headon (old geom)20mrad BeamParUnitnomMPIFITMPIFIT σx (ave)nm5533.692.554.674.92 σx (diff)nm3.695.483.884.67 σy (ave)nm50.2090.3360.1250.111 σy (diff)nm0.5850.2400.1370.161 σz (ave)μmμm30011.466.568.468.13 σz (diff)μmμm4.112.886.725.02 N per Bunch (ave)10 20.0110.0060.014 N per Bunch (diff)10 0.0110.0070.0210.022

26 9/19/2005Ch.Grah: Beamdiagnostics26 Summary  A fast luminosity signal could significantly increase luminosity.  Analyzing beamstrahlung grants access to many beam parameters.  Investigating the possibility of measuring the distribution of pairs from beamstrahlung with BeamCal. Promising results also for 20mrad case, but further work needed for final result.  Single and Multiparameter analysis is feasible.  Photon distribution at lowest angles (~100 μrad) with PhotoCal has potential. The more uncorrelated observables the better our parameter reconstruction will work.

27 9/19/2005Ch.Grah: Beamdiagnostics27 Outlook  Optimization of observables.  Comparison of the simple b-field approximation to using the b-field map.  Include a realistic detector response.  Look at realistic beam simulation and non linear bunch effects.


Download ppt "Luminosity Monitoring and Beam Diagnostics FCAL Collaboration Workshop TAU, September 18-19, 2005 Christian Grah."

Similar presentations


Ads by Google