Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.

Slides:



Advertisements
Similar presentations
Abteilung Festkörperphysik Solid State Physics University of Ulm Abteilung Festkörperphysik Solid State Physics University of Ulm Note that 1µm =
Advertisements

6.1 Transistor Operation 6.2 The Junction FET
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
1 LINLITHGOW ACADEMY PHYSICS DEPARTMENT MOSFETs 2 MOSFETS: CONTENT STATEMENTS Describe the structure of an n-channel enhancement MOSFET using the terms:
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Derek Wright Monday, March 7th, 2005
Metal-Oxide-Semiconductor Fields Effect Transistors (MOSFETs) From Prof. J. Hopwood.
Chun-Chieh Lu Carbon-based devices on flexible substrate 1.
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
MOSFETs Monday 19 th September. MOSFETs Monday 19 th September In this presentation we will look at the following: State the main differences between.
GROWTH AND INVESTIGATION OF HALF-METALLIC Fe 3 O 4 THIN FILMS B. Vengalis, V. Lisauskas, A. Lisauskas, K.Šliužienė, V. Jasutis Semiconductor Physics Institute,
ENEE-698E 2 nd presentation by: Saeed Esmaili Sardari November 06, 2007.
Metal Semiconductor Field Effect Transistors
Spring 2007EE130 Lecture 34, Slide 1 Lecture #34 OUTLINE The MOS Capacitor: MOS non-idealities (cont.) V T adjustment Reading: Chapter 18.3.
Epitaxial Growth of Ferroelectric Titanate Layers by Sol-Gel Routes Muhammad Salameh Prof. Eric P. Kvam.
Lecture 15 OUTLINE MOSFET structure & operation (qualitative)
The metal-oxide field-effect transistor (MOSFET)
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Applications: CO Gas Sensor
Lecture 0: Introduction. CMOS VLSI Design 4th Ed. 0: Introduction2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale.
MOS Capacitors ECE Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the type that.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
Lecture 19 OUTLINE The MOSFET: Structure and operation
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Giant magneto resistivity in Fe 3-x Zn x O 4 nanowire structures 産研 田中研 尾野 篤志.
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
IC Process Integration
ISIR Tanaka lab. Tatsuya Hori 層状鉄酸化物を用いた電子相変化デバイスの 応用に向けた研究.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 24, 2010 MOS Model.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Fabrication of (Fe,Zn) 3 O 4 -BiFeO 3 nano-pillar structure by self- assembled growth Tanaka Laboratory Takuya Sakamoto.
Field Effect Transistor. What is FET FET is abbreviation of Field Effect Transistor. This is a transistor in which current is controlled by voltage only.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 17, 2014 MOS Model.
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Fabrication of (Fe,Mn)3O4 nanowires using a sidewall deposition method
PROCESS AND DEVICE SIMULATION OF A POWER MOSFET USING SILVACO TCAD.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29.
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
Conductors – many electrons free to move
Atomic Layer Deposition for Microchannel Plates Jeffrey Elam Argonne National Laboratory September 24, 2009.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
MOS Capacitors UoG-UESTC Some Classes of Field Effect Transistors Metal-Oxide-Semiconductor Field Effect Transistor ▫ MOSFET, which will be the.
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
Integrated Circuit Devices
Field Effect Transistor (FET)
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Flame Synthesized Nanomaterials for Supercapacitor Applications
EE130/230A Discussion 10 Peng Zheng.
Government Engineering College Bharuch Metal Oxide Semiconductor Field Effect Transistors{MOSFET} Prepared by- RAHISH PATEL PIYUSH KUMAR SINGH
CHAPTER 6: MOSFET & RELATED DEVICES CHAPTER 6: MOSFET & RELATED DEVICES Part 1.
Introduction to CMOS VLSI Design Lecture 0: Introduction.
Supported by Wang Dao Project (UROP)
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Search for Superconductivity with Nanodevices
Ionic liquid gating of VO2 with a hBN interfacial barrier
Presentation transcript:

Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel Electric Double Layer Transistor TANAKA LAB. Takuro Nakamura Gate Source Drain Working as p-type 1

Electron Crystal Electron Liquid External field Metal Insulator Transition (MIT) in 3d Transition Metal Oxide Materials Strongly correlated electron materials have strong Coulomb interaction between narrow 3d-orbitals Gigantic physical properties changes emerge from electronic phases transition 2

(La 1-x-y Pr y Ca x )MnO 3 La,Pr,Ca Mn O (La, Pr, Ca) MnO /4+ Mn 3+ (d 4 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) Mn 4+ (d 4 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) LaMnO 3 3+ Mn 4+ (d 4 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Mn 3+ (d 4 ) Insulator Metal 3

(La 1-x-y Pr y Ca x )MnO Low T High T Nature (1999) PRB 51, (1995) La 1-x Sr x MnO 3 4 La,Pr,Ca Mn O

Conventional Field-effect-transistor Insulator Source Gate Drain p-type semiconductor V G = 0V G > 0 Strongly correlated materials are different from semiconductor materials MISFET n+n+ n+n+ Inversion Layer VDVD IDID VGVG 5

Required Carrier for Electric-field-effect Nature (2003) Carrier – cm -2 is required 6

MOTIVATION Base experiments for realization of electric-field-effect nano-device *Fabrication of EDLT structure on LPCMO thin film *Verification of gate control of electronic properties Gate Ion Liquid (IL) LPCMO channel Electric Double Layer Transistor (EDLT) Carrier doping with ionic liquid gating EDL Electric field > 1 MV/cm Capacitance ~10  F/cm 2 7

Epitaxial LPCMO thin film Deposited (La Pr 0.1 Ca )MnO 3 on MgO(001) sub. by pulsed laser deposition method. T Sub. = 700 ( o C), P O 2 = 30 (Pa) in-situ annealing T Sub. = 700 ( o C), P O 2 = 1000 (Pa) Out-of-plane XRD 002 MgO 001 MgO 040 LPCMO // [001] MgO Target ArF excimer laser (l =193 nm) Substrate Heater Plume Pluse Laser Deposition t = 20 nm 8

Fabrication Process of LPCMO-channel EDLT MgO (001) substrate Depositing LPCMO film Depositing Au/Ni electrode hall-bar structure Sputtering SiO 2 seperator Putting ionic liquid (DEME-TFSI) 9

LPCMO-channel EDLT structure Ionic liquid DEME-TFSI Source Drain 20  m LPCMO thin film thickness : ~ 8 nm Gate V ds = 0.1 V, V G = -3~+3 V applied at 220K Sweep 220~10 K and measure Resistivity Picture of EDLT 200  m 11

(La, Pr, Ca) MnO /4+ Mn 4+ (d 3 ) Mn 3+ (d 4 ) egeg t 2g Mn 3+ (d 4 ) Gate voltage dependence of the transport properties in LPCMO Thin Film Verified LPCMO thin film work as p-type with Electric-field-effect S D 20  m t = 8 nm 11

InsulatorMetal Nano-scale Phase Separation COI FMM (La,Pr,Ca)MnO 3 thin film T MI 12

COI FMM Science 285, 1540 (1999) FMM COI 200nm (La,Pr,Ca)MnO 3 thin film Nano-scale Phase Separation Phase separation picture Coexisting FerroMagnetic Metal (FMM) and Charge Ordered Insulator (COI) with nano-meters scale T MI 13

V G < 0 [V] (hole doping) FMM rich V G = 0 [V] V G > 0 [V] (electron doping) COI rich Tuning volume fraction of metal domain and insulator domain by electrostatic carrier doping Origin of Resistivity Changes with EDL Gating Metal Insulator T ~ T MI 14

Summary & Future Work Gate Ion Liquid (IL) Oxide channel MgO LPCMO 300nm LPCMO nano-wire *I succeed to fabricate EDLT structure *I verified field-effect resistivity change in LPCMO Work as p-type *fabricating EDLT structure on the LPCMO nano-wire 15

16