Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Bose-Einstein Condensation Ultracold Quantum Coherent Gases.
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Making cold molecules from cold atoms
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Degenerate Quantum Gases on a Chip Dept. Of Physics, University of Toronto Prof: Joseph Thywissen Post Docs: Seth Aubin Stefan Myrskog Ph.D. Students:
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultra-Cold Matter Technology Physics and Applications Seth A. M. Aubin University of Toronto, Canada June 15, 2006 NRC, Ottawa.
Cold Atomic and Molecular Collisions
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Bose Einstein Condensation Condensed Matter II –Spring 2007 Davi Ortega In Diluted Gas.
Ultracold Plasmas ( Zafar Yasin). Outline - Creation and why considered important? - Characterization. - Modeling. -My Past Research. - Current Research.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Current “Hot” Areas of Research in Physics. Mature Physics and Hot Physics.
Experiments with ultracold atomic gases
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Determination of fundamental constants using laser cooled molecular ions.
Helium Spectroscopy Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**,
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Physics & Ultra-Cold Matter Seth A. M. Aubin Dept. of Physics College of William and Mary December 16, 2009 Washington, DC.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Ultracold 3 He and 4 He atoms near quantum degeneracy: QED test and the size of the helion and  -particle Rob van Rooij, Joe Borbely, Juliette Simonet*,
Spin-statistics theorem As we discussed in P301, all sub-atomic particles with which we have experience have an internal degree of freedom known as intrinsic.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Single atom manipulations Benoît Darquié, Silvia Bergamini, Junxiang Zhang, Antoine Browaeys and Philippe Grangier Laboratoire Charles Fabry de l'Institut.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
B.E.C.(Bose-Einstein Condensation) 발표자 : 이수룡 (98).
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
QUEST - Centre for Quantum Engineering and Space-Time Research 1 A continuous loading scheme for a dipole trap.
18.3 Bose–Einstein Condensation
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Collisional loss rate measurement of Cesium atoms in MOT Speaker : Wang guiping Date : December 25.
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Laser Cooling and Trapping
Introduction to Plasma Physics and Plasma-based Acceleration
7. Ideal Bose Systems Thermodynamic Behavior of an Ideal Bose Gas
Making cold molecules from cold atoms
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Cold Atom project 12/02/2019.
RF and Microwave Near-Field Traps for Ultracold Atoms
Presentation transcript:

Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen

Outline Reminder on ultracold Helium S-wave scattering length Optical Dipole trap

Ultracold Helium Cooling down atoms using –Lasers –Evaporative cooling Bosons and fermions –Bose-Einstein Condensate (BEC) –Degenerate Fermi-gas (DFG) Study atom properties –Ultra-cold interactions –Quantum statistics –QED tests Helium reminder - Scattering length - Dipole trap

Helium reminder Metastable Helium –  ~ 8000 s –19.8 eV internal energy –Cooling at 1083 nm Bosonic: 4 He Fermionic: 3 He Helium reminder - Scattering length - Dipole trap

Cooling down Magneto-Optical Trap: T ~ 0.8 mK N ~ 10 9 Helium reminder - Scattering length - Dipole trap

Cooling further Transfer to magnetic trap (MT) Laser cooling RF-induced evaporative cooling –BEC / DFG Helium reminder - Scattering length - Dipole trap

Detection MCP –time-of-flight CCD camera –in-situ –time-of-flight –QE ~ 1083 nm Photodiode array camera –InGaAs –QE ~ 1083 nm Helium reminder - Scattering length - Dipole trap

s-wave scattering length

Cold collisions Collision in central scattering potential Long distance behaviour Scattering cross-section  Low-energy –Spherical wave expansion –Only a few terms contribute Helium reminder - Scattering length - Dipole trap

Ultra-cold collisions only s-wave scattering –Incoming plane wave, outgoing plane wave with a phase shift  = 8  a 2 (identical particles)  = 4  a 2 (non-identical particles) Helium reminder - Scattering length - Dipole trap

Relevant a’s boson-boson –a 44 (measured accurately, +7.5 nm) boson-fermion –a 34 (unknown, theory: +27 nm) fermion-fermion –a 33 = zero Helium reminder - Scattering length - Dipole trap

Measuring a Photo-association spectroscopy Damped modes Thermalization –After disturbing equilibrium Helium reminder - Scattering length - Dipole trap

Disturbing the cloud Radial confinement off / on Too rough. Helium reminder - Scattering length - Dipole trap t (ms) He* count (mV)

Disturbing the cloud Raising temperature in one direction –Slowly increase, quickly restore confinement in one direction Helium reminder - Scattering length - Dipole trap

Disturbing the cloud Raising temperature in one direction Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v ± 5% Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v ± 5% ± 20% Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v ± 5% ± 20% ± 40% Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v ± 5% ± 20% ± 40% ± 50% Helium reminder - Scattering length - Dipole trap

Obtaining a Thermalization after 2.65 collisions (/atom)  rel =  -1 n  v ± 5% ± 20% ± 40% ± 50% → a ± 34% Helium reminder - Scattering length - Dipole trap

First measurement a 44 = 4 ± 2 nm –T ~ 250  K: too hot t (ms)   / Helium reminder - Scattering length - Dipole trap

3 He Different 3 He/ 4 He ratios 4 He needed for cooling Fewer atoms –Imaging more challenging Helium reminder - Scattering length - Dipole trap

Optical Dipole Trap

Overview Electric dipole interaction –Red-detuned: trapped in intensity maximum 1557 nm, 2W trapping laser –Recoil: ~ 1  K –~40  m focus (diameter) Crossed-dipole configuration –  ~ 20º Helium reminder - Scattering length - Dipole trap

Trap characteristics Scattering rate Helium reminder - Scattering length - Dipole trap r (w0)  (s -1 )

Trap characteristics Depth & harmonicity – radial (7.2 kHz) Helium reminder - Scattering length - Dipole trap Depth (  K) r (w0)

Trap characteristics Depth & harmonicity – axial (1.5 kHz) Helium reminder - Scattering length - Dipole trap r (w0) Depth (  K)

Projects 1557 nm forbidden transition –Loss detection? Feshbach resonances Phase-separation Very high trap frequencies (>100 kHz) –Suppression of Penning ionization? Helium reminder - Scattering length - Dipole trap

(end)