Spring 2010, Mar 10ELEC 7770: Advanced VLSI Design (Agrawal)1 ELEC 7770 Advanced VLSI Design Spring 2010 Gate Sizing Vishwani D. Agrawal James J. Danaher.

Slides:



Advertisements
Similar presentations
Logic Gate Delay Modeling -1 Bishnu Prasad Das Research Scholar CEDT, IISc, Bangalore
Advertisements

9/15/05ELEC / Lecture 71 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Digital Integrated Circuits A Design Perspective
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch5. CMOS Performance Factors.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
8/29/06 and 8/31/06 ELEC / Lecture 3 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage.
10/25/05ELEC / Lecture 151 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/01/05ELEC / Lecture 171 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
11/03/05ELEC / Lecture 181 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 08, Apr 1 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Testability Measures Vishwani D. Agrawal James.
Spring 07, Feb 20 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Reducing Power through Multicore Parallelism Vishwani.
Spring 08, Jan 15 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Digital Integrated Circuits A Design Perspective
8/19/04ELEC / ELEC / Advanced Topics in Electrical Engineering Designing VLSI for Low-Power and Self-Test Fall 2004 Vishwani.
Spring 07, Jan 16 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Introduction Vishwani D. Agrawal James J. Danaher.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 12 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 5 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Low Voltage Low-Power Devices Vishwani.
8/30/05ELEC / Lecture 31 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/20/05ELEC / Lecture 81 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
9/13/05ELEC / Lecture 61 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 07, Feb 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Consumption in a Memory Vishwani D. Agrawal.
© Digital Integrated Circuits 2nd Inverter CMOS Inverter: Digital Workhorse  Best Figures of Merit in CMOS Family  Noise Immunity  Performance  Power/Buffer.
Spring 07, Jan 23 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Moore’s Law Vishwani D. Agrawal James J. Danaher.
8/18/05ELEC / Lecture 11 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 2006, Nov. 28 ELEC / Lecture 11 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Power Analysis: High-Level.
10/13/05ELEC / Lecture 131 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Fall 2006, Oct. 5 ELEC / Lecture 8 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Glitch-Free ASICs and Custom.
Fall 2006, Sep. 26, Oct. 3 ELEC / Lecture 7 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Dynamic Power:
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 13 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino.
10/20/05ELEC / Lecture 141 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 07, Feb 22 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Power Aware Microprocessors Vishwani D. Agrawal.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 6 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Dynamic Power: Device Sizing Vishwani.
Digital Integrated Circuits A Design Perspective
Fall 2006: Dec. 5 ELEC / Lecture 13 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits Adiabatic Logic Vishwani.
CMOS VLSI For Computer Engineering Lecture 4 – Logical Effort Prof. Luke Theogarajan parts adapted form Harris – and Rabaey-
9/27/05ELEC / Lecture 91 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Mary Jane Irwin ( ) Modified by Dr. George Engel (SIUE)
Review: CMOS Inverter: Dynamic
1. Department of Electronics Engineering Sahand University of Technology NMOS inverter with an n-channel enhancement-mode mosfet with the gate connected.
Elmore Delay, Logical Effort
Chapter 07 Electronic Analysis of CMOS Logic Gates
CMOS Inverter: Dynamic V DD RnRn V out = 0 V in = V DD CLCL t pHL = f(R n, C L )  Transient, or dynamic, response determines the maximum speed at which.
Inverter Chapter 5 The Inverter April 10, Inverter Objective of This Chapter  Use Inverter to know basic CMOS Circuits Operations  Watch for performance.
EE141 © Digital Integrated Circuits 2nd Inverter 1 Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje.
Switch Logic EE141.
© Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Chapter 6 Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved. High-Speed CMOS Logic Design.
Copyright Agrawal, 2007ELEC6270 Spring 09, Lecture 71 ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Power Analysis: High-Level Vishwani.
EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC.
Modern VLSI Design 3e: Chapter 4 Copyright  1998, 2002 Prentice Hall PTR Topics n Transistor sizing: –Spice analysis. –Logical effort.
CSE477 L11 Fast Logic.1Irwin&Vijay, PSU, 2002 CSE477 VLSI Digital Circuits Fall 2002 Lecture 11: Designing for Speed Mary Jane Irwin (
11/15/05ELEC / Lecture 191 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
ELEC Digital Logic Circuits Fall 2015 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
ELEC Digital Logic Circuits Fall 2014 Delay and Power Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering.
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power Logic Family Vishwani D. Agrawal James J. Danaher.
ELEC 7770 Advanced VLSI Design Spring 2016 Introduction
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
ELEC 7770 Advanced VLSI Design Spring 2014 Introduction
ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
ELEC 7770 Advanced VLSI Design Spring 2012 Introduction
CSV881: Low-Power Design Multicore Design for Low Power
ELEC 7770 Advanced VLSI Design Spring 2010 Interconnects and Crosstalk
ELEC 7770 Advanced VLSI Design Spring 2010 Introduction
ELEC 5270/6270 Spring 2011 Low-Power Design of Electronic Circuits Pass Transistor Logic: A Low Power Logic Family Vishwani D. Agrawal James J. Danaher.
ELEC 7770 Advanced VLSI Design Spring 2014 Technology Mapping
ELEC 7770 Advanced VLSI Design Spring 2016 Technology Mapping
ELEC 7770 Advanced VLSI Design Spring 2012 Gate Sizing
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Presentation transcript:

Spring 2010, Mar 10ELEC 7770: Advanced VLSI Design (Agrawal)1 ELEC 7770 Advanced VLSI Design Spring 2010 Gate Sizing Vishwani D. Agrawal James J. Danaher Professor ECE Department, Auburn University Auburn, AL

Clock Distribution clock Spring 2010, Mar 102ELEC 7770: Advanced VLSI Design (Agrawal)

Clock Power P clk = C L V DD 2 f + C L V DD 2 f / λ + C L V DD 2 f / λ stages – 1 1 = C L V DD 2 f Σ─ n= 0 λ n where C L =total load capacitance λ =constant fanout at each stage in distribution network Clock consumes about 40% of total processor power. Spring 2010, Mar 103ELEC 7770: Advanced VLSI Design (Agrawal)

Delay of a CMOS Gate CMOS gate CLCL CgCg C int Propagation delay through the gate: t p = 0.69 R eq (C int + C L ) ≈ 0.69 R eq C g (1 + C L /C g ) = t p0 (1 + C L /C g ) Gate capacitance Intrinsic capacitance Spring 2010, Mar 104ELEC 7770: Advanced VLSI Design (Agrawal)

R eq, C g, C int, and Width Sizing  R eq : equivalent resistance of “on” transistor, proportional to L/W; scales as 1/S, S = sizing factor  C g : gate capacitance, proportional to C ox WL; scales as S  C int : intrinsic output capacitance ≈ C g, for submicron processes  t p0 : intrinsic delay = 0.69R eq C g ; independent of sizing Spring 2010, Mar 105ELEC 7770: Advanced VLSI Design (Agrawal)

Effective Fan-out, f  Effective fan-out is defined as the ratio between the external load capacitance and the input capacitance: f=C L /C g t p =t p0 (1 + f ) Spring 2010, Mar 106ELEC 7770: Advanced VLSI Design (Agrawal)

Sizing an Inverter Chain Cg1Cg1 Cg2Cg2 CLCL 12N C g2 = f2C g1 t p1 = t p0 (1 + C g2 /C g1 ) t p2 = t p0 (1 + C g3 /C g2 )N t p =Σ t pj =t p0 Σ (1 + C gj+1 /C gj ) j=1j=1 Spring 2010, Mar 107ELEC 7770: Advanced VLSI Design (Agrawal)

Minimum Delay Sizing Equate partial derivatives of t p with respect to C gj to 0: 1/C g1 – C g3 /C g2 2 = 0, etc. or C g2 2 = C g1 ×C g3, etc. i.e., gate capacitance is geometric mean of forward and backward gate capacitances. Also, C g2 /C g1 = C g3 /C g2, etc. i.e., all stages are sized up by the same factor f with respect to the preceding stage: C L /C g1 = F = f N, t p = Nt p0 (1 + F 1/N ) Spring 2010, Mar 108ELEC 7770: Advanced VLSI Design (Agrawal)

Minimum Delay Sizing Equate partial derivatives of t p with respect to N to 0: dNt p0 (1 + F 1/N ) ───────── = 0 dN i.e., F 1/N – F 1/N (ln F)/N = 0 or ln f = 1 → f = e = 2.7 and N = ln F Spring 2010, Mar 109ELEC 7770: Advanced VLSI Design (Agrawal)

Sizing for Energy Minimization Main idea: For a given circuit, reduce energy consumption by reducing the supply voltage. This will increase delay. Compensate the delay increase by transistor sizing. Ref: J. M. Rabaey, A. Chandrakasan and B. Nikolić, Digital Integrated Circuits, Second Edition, Upper Saddle River, New Jersey: Pearson Education, 2003, Section 5.4. Spring 2010, Mar 1010ELEC 7770: Advanced VLSI Design (Agrawal)

Summary  Device sizing combined with supply voltage reduction reduces energy consumption.  For large fan-out energy reduction by a factor of 10 is possible.  An exception is F = 1 case, where the minimum size device is also the most effective one.  Oversizing the devices increases energy consumption. Spring 2010, Mar 1011ELEC 7770: Advanced VLSI Design (Agrawal)