Valerio Re - LCWS 2008, UIC, November 16-20, 2008 1 Status and perspectives of Deep N-Well CMOS MAPS for the ILC Vertex Detector Valerio Re Università.

Slides:



Advertisements
Similar presentations
1 1 Università degli Studi di Pisa, 2 INFN Pisa, 3 Scuola Normale Superiore di Pisa, 4 Università degli Studi di Pavia, 5 INFN Pavia, 6 Università degli.
Advertisements

G. RizzoSuperB WorkShop – 17 November R&D on silicon pixels and strips Giuliana Rizzo for the Pisa BaBar Group SuperB WorkShop Frascati-17 November.
Snowmass 2005 SOI detector R&D Massimo Caccia, Antonio Bulgheroni Univ. dell’Insubria / INFN Milano (Italy) M. Jastrzab, M. Koziel, W. Kucewicz, H. Niemiec.
Chronopixel R&D status – May 2014 N. B. Sinev University of Oregon, Eugene In collaboration with J.E.Brau, D.M.Strom (University of Oregon, Eugene, OR),
CMOS technologies in the 100 nm range for rad-hard front-end electronics in future collider experiments V. Re a,c, L. Gaioni b,c, M. Manghisoni a,c, L.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
1 Nick Sinev LCWS08, University of Illinois at Chicago November 18, 2008 Status of the Chronopixel project J. E. Brau, N. B. Sinev, D. M. Strom University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Università degli Studi di Pavia and INFN Pavia
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
VIP1: a 3D Integrated Circuit for Pixel Applications in High Energy Physics Jim Hoff*, Grzegorz Deptuch, Tom Zimmerman, Ray Yarema - Fermilab *
C. Andreoli, A. Bulgheroni, C. Cappellini, M. Caccia, L. Gaioni, M. Jastrzab, M. Manghisoni, E. Pozzati, L. Ratti, V. Re, F. Risigo, V. Speziali, G. Traversi.
L. Ratti a,c, E. Pozzati a,c, C. Andreoli a,c, M. Manghisoni b,c, V. Re b,c, V. Speziali a,c, G. Traversi b,c a Università degli Studi di Pavia b Università.
PHASE-1B ACTIVITIES L. Demaria – INFN Torino. Introduction  The inner layer of the Phase 1 Pixel detector is exposed to very high level of irradiation.
F.Forti On behalf of the SLIM5 Collaboration
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
A. Rivetti Villa Olmo, 7/10/2009 Lepix: monolithic detectors for particle tracking in standard very deep submicron CMOS technologies. A. RIVETTI I.N.F.N.
26 Apr 2009Paul Dauncey1 Digital ECAL: Lecture 2 Paul Dauncey Imperial College London.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
CMOS MAPS with pixel level sparsification and time stamping capabilities for applications at the ILC Gianluca Traversi 1,2
LHCb Vertex Detector and Beetle Chip
Fermilab Silicon Strip Readout Chip for BTEV
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
G. Traversi, M. Manghisoni, L. Ratti, V. Re, V. Speziali Vertex 2007 – 16 th International Workshop on Vertex Detectors September 23 – 28, 2007 – Lake.
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Apr 23, 2010G.Rizzo – VIPS Pavia1 Giuliana Rizzo INFN and University, Pisa on behalf of SuperB group Pixel Sensors with Vertical Integration Technologies.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
L. Ratti a,b, M. Dellagiovanna a, L. Gaioni a,b, M. Manghisoni b,c, V. Re b,c, G. Traversi b,c, S. Bettarini d,e, F. Morsani e, G. Rizzo d,e a Università.
V. ReSuperB Workshop, Paris, February 16, Valerio Re INFN Pavia and University of Bergamo SuperB Workshop Paris, February 15 – 18, 2009 SuperB SVT.
S.Zucca a,c, L. Gaioni b,c, A. Manazza a,c, M. Manghisoni b,c, L. Ratti a,c V. Re b,c, E. Quartieri a,c, G. Traversi b,c a Università degli Studi di Pavia.
G. RizzoSVT Meeting – April, SVT Update SVT bi-weekly Meeting - April, Giuliana Rizzo Universita’ & INFN Pisa Group Organization & WBS.
Vertical Integration Workshop, Schloss Ringberg, April 6 –9, 2008 V. Re1 Valerio Re INFN Pavia and University of Bergamo on behalf of the SuperB collaboration.
The SuperB Silicon Vertex Tracker Abstract : The SuperB project aims to build an asymmetric e+ - e- collider capable of reaching.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
G. RizzoSVT - SuperB Workshop – Paris 16 Feb SVT Plans for TDR Activities since Elba Meeting Plans for TDR preparation Giuliana Rizzo Universita’
Update on & SVT readout chip requirements
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Valerio Re Università di Bergamo and INFN, Pavia, Italy
10-12 April 2013, INFN-LNF, Frascati, Italy
Giuliana Rizzo INFN and University, Pisa on behalf of SVT-SuperB group
Activities in Pavia/Bergamo on Layer0 pixels
Charge sensitive amplifier
L. Rattia for the VIPIX collaboration
SVT – SuperB Workshop – SLAC 6-9 Oct 2009
Giuliana Rizzo INFN and University, Pisa on behalf of SVT-SuperB group
INFN Pavia and University of Bergamo
Beam Test Results on Deep NWell MAPS Matrix
V. Reb,c, C. Andreolia,c, M. Manghisonib,c, E. Pozzatia,c, L
INFN Pavia / University of Bergamo
Deep N-well 130nm CMOS MAPS for the ILC vertex detector Valerio Re
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
First Testbeam results
A 3D deep n-well CMOS MAPS for the ILC vertex detector
Characterization of the APSEL4D MAPS chip
HV-MAPS Designs and Results I
L. Ratti V SuperB Collaboration Meeting
The SuperB Silicon Vertex Tracker
Mimoroma2 MAPS chip: all NMOS on pixel sparsification architecture
Status & perspectives of the R&D on DNW MAPS
SVT detector electronics
Monolithic active pixel sensors in a 130 nm triple well CMOS process
SVT detector electronics
Presentation transcript:

Valerio Re - LCWS 2008, UIC, November 16-20, Status and perspectives of Deep N-Well CMOS MAPS for the ILC Vertex Detector Valerio Re Università di Bergamo and INFN - Pavia International Linear Collider Workshop November 2008Chicago, IL

Valerio Re - LCWS 2008, UIC, November 16-20, Outline Impact of new technologies on the performance of DNW-MAPS The way forward to use DNW MAPS in actual experiments The first generation of Deep N-Well (DNW) MAPS with on-pixel data sparsification and time stamping, tested in a beam for the first time in September 2008 ILC-class and SuperB-class 130nm DNW CMOS MAPS with different pixel pitch, analog signal processing and digital readout architecture

Valerio Re - LCWS 2008, UIC, November 16-20, Charge-to-Voltage conversion done by the charge preamplifier The collecting electrode (Deep N-Well) can be extended to obtain higher single pixel collected charge (the gain does NOT depend on the sensor capacitance), reducing charge loss to competitive N-wells where PMOSFETs are located Fill factor = DNW/total n-well area ~90% in the prototype test structures PREAMPL SHAPER DISCLATCH Classical optimum signal processing chain for capacitive detector can be implemented at pixel level: Deep N-Well (DNW) sensor concept New approach in CMOS MAPS design compatible with data sparsification architecture to improve the readout speed potential

Valerio Re - LCWS 2008, UIC, November 16-20, After 5 years of R&D…. 130 nm DNW MAPS: first generation of CMOS sensors with in-pixel sparsification and time stamping (130 nm STM CMOS process) APSEL3D 8x32 matrix. Shielded pixel Data Driven sparsified readout APSEL4D 32x128 matrix. Data Driven, continuously operating sparsified readout Beam test Sep SLIM5 50x50 m pitch SDR0 16x16 matrix + smaller test structures. Intertrain sparsified readout 25x25 m pitch

Valerio Re - LCWS 2008, UIC, November 16-20, Intertrain Readout Architecture for “ILC” MAPS (SDR0 chip) X=1X=16 Y=1 Y=2 Y=16 X=2 Time Stamp Buffer 1 Time Stamp Buffer 2 Time Stamp Buffer 16 Cell (1,1)Cell (1,2)Cell (1,16) Cell (2,1)Cell (2,2)Cell (2,16) Cell (16,1)Cell (16,2)Cell (16,16) MUX Last token out First token in X Y T TkinTkout 111 Tkin TkoutTkinTkout TkinTkoutTkin TkoutTkinTkoutTkinTkoutTkin TS Serial data output gXb gYb TS Readout CK gXb gYb gXb gYb gXb gYb gXb gYb gXb gYb gXb gYb gXb gYb gXb gYb Cell CK gXb=get_X_bus gYb=get_Y_bus TS=Time_Stamp Tkin=token_in Tkout=Token_out The number of elements may be increased without changing the pixel logic (just larger X- and Y- registers and serializer will be required) 337 ns x s bunch train interval intertrain interval Digital readout 0.95 ms Suggested by FNAL IC design group, first implemented in the VIP chip

Valerio Re - LCWS 2008, UIC, November 16-20, Two versions of the analog section for different pixel pitch 22T 14T iFiF CFCF VtVt Discriminator Preamplifier -G(s) –Pixel cell: 50x50  m 2 –Sensor capacitance: 400 fF –Power dissipation: 30  W –Pixel cell: 25x25  m 2 –Sensor capacitance: 150 fF –Power dissipation: 5  W APSEL (SuperB VTX Layer0) SDR0 (ILC VTX)

Valerio Re - LCWS 2008, UIC, November 16-20, The SDR0 pixel 25 m DNW sensor analog front-end digital section transistors Sparsification logic Time stamp register 22T 14T iFiF CFCF VtVt Discriminator Preamplifier -G(s) P TOT ≈ 5uW

Valerio Re - LCWS 2008, UIC, November 16-20, SDR0 performance Matrix response to infrared laser Digital readout is working fine Test with 55 Fe ENC = 40 e C D =120 fF (preamplifier input device: I D = 1  A, W/L = 22/0.25) Average charge sensitivity  0.7 V/fC Threshold dispersion  60 e SDR0 - 16x16 pixels 25  m pixel pitch

Valerio Re - LCWS 2008, UIC, November 16-20, Radiation hardness Radiation tests on prototypes (APSEL chips) show that DNW MAPS sensors are rad-hard at ILC total dose levels (1 Mrad), even without any rad-tolerant design trick At these TID levels, sensor leakage current is still not a problem; radiation effects are associated to thick oxides (field oxide, STI) Charge sensitivity Noise

Valerio Re - LCWS 2008, UIC, November 16-20, Ionizing radiation effects on lateral isolation oxides Gate Drain Source n+ poly STI Main transistor finger Source Drain Gate Lateral parasitic devices gate STI t OX,lat,max t OX,lat,min Inverted region At STI sidewall TID induced positive charge P-type substrate  Besides affecting static characteristics and leakage currents and lateral transistors are noisy as the main MOSFET device

Valerio Re - LCWS 2008, UIC, November 16-20, SLIM5 Beam test SLIM5 Beam test 3-16 Sep. CERN. Main goals: –APSEL4D DNW MAPS matrix resolution & efficiency –Thin (200  m) striplets module with FSSR2 readout chips –First demostration of LVL1 capability with silicon tracker information sent to Associative Memories APSEL4D chip 10 mm 2 active area A few numbers: Maps readout clock 20 MHz DAQ rate 30 kHz 90 M events on disk (40 Gb) Data analysis ongoing APSEL4D chip

Valerio Re - LCWS 2008, UIC, November 16-20, Competitive nwells DNW MAPS Hit Efficiency measured in a beam test (APSEL4D) Measured with tracks reconstructed with the reference telescope extrapolated on MAPS matrix Competitive N-wells (PMOS) in pixel cell can steal charge reducing the hit efficiency –Fill factor DNW/total N-well area ~ 90 % in present design Room for improvements with a different design of the sensor (multiple collecting electrodes around competitive N-wells) MAPS hit efficiency up to 90 % with 450 e- (~ 4  _noise+2  _thr_disp) 300 and 100  m thick chips give similar results DNW sensor 0.5 MIP

Valerio Re - LCWS 2008, UIC, November 16-20, Detection efficiency and charge collection Beam test results of APSEL4D show a ~90% efficiency, which agrees very well with TCAD simulations With APSEL4D sensor geometry (left), Efficiency ~ 93.5% from simulation (pixel 250 e- = 5xNoise) Inefficient regions shown with dots (pixel signal < 250 e-) Optimized cell with satellite N-wells (right) Efficiency ~ 99.5% DNW collecting electrode Competitive Nwells 3x3 MATRIX T sensor geometry Satellite N- wells connected to central DNW electrode 3x3 MATRIX optimized sensor –Locate low efficiency region inside pixel cell –Add ad hoc “satellite” collecting electrodes

Valerio Re - LCWS 2008, UIC, November 16-20, Next generation of DNW MAPS has to provide devices that approach actual experiment specifications more closely S everal issues have to be addressed to meet ILC Vertex Detector specifications (pixel pitch, detection efficiency): –Binary readout: ILC VTX demands a pixel pitch < 20  m to achieve required single point resolution < 5  m. –Detection efficiency does not meet requirements (> 99 %) because of competitive n-wells (PMOS) decreasing the fill factor –Capability of handling multiple pixel hits has to be included without degrading efficiency and pitch Two different ways to approach this goal: 1)A gradual performance improvement  better sensor layout, optimize interconnections and pixel cell  SuperB Layer0 test module 2)A technology leap  Vertical integration The way forward

Valerio Re - LCWS 2008, UIC, November 16-20, D vertical integration and DNW MAPS Use vertical integration technology to interconnect two 130nm CMOS layers NMOS PMOS Standard CMOS Deep N- well structure NMOS PMOS Buried N-type layer P-well Standard N- well P-substrate Mostly digital CMOS tier Tier interconnection and vias Analog and sensor CMOS (mostly NMOS) tier Tezzaron/Chartered technology (Fermilab MPW run) Overcome limitations typically associated to “conventional” and DNW CMOS MAPS: –Reduced pixel pitch –100 % fill factor (few or no PMOS in the sensor layer, no competitive N-wells) –Better S/N vs power dissipation (smaller sensor capacitance) –Increased pixel functionalities

Valerio Re - LCWS 2008, UIC, November 16-20, The Italian VIPIX collaboration –“Pixel systems for thin charged particle trackers based on vertical integration technologies” - VIPIX (INFN Pisa, Pavia, Bologna, Trieste, Trento, Perugia, Roma3, Torino) –Members of the CMOS-3DIT Consortium (FNAL-IN2P3-INFN) 1.Interconnection between 2 (or more) CMOS layers, one layer with a MAPS (DNW) device and analog front-end, and the other layer(s) with the digital readout 2.Interconnection between a CMOS readout electronics chip (2D or 3D) and a fully-depleted high resistivity sensor a) with bump bonding (standard, but low pitch may be needed) b) with a vertical integration technique (low material budget, more advanced)

Valerio Re - LCWS 2008, UIC, November 16-20, Conclusions After several years of R&D, Deep N-Well monolithic active pixel sensors are reaching a good maturity level, but there is room for substantial improvements The performance of DNW MAPS needs to be upgraded if they have to fulfill ILC specifications DNW MAPS can benefit from technological advances

Valerio Re - LCWS 2008, UIC, November 16-20, Acknowledgments 1 Università degli Studi di Pisa, 2 INFN Pisa, 3 Scuola Normale Superiore di Pisa, 4 Università degli Studi di Pavia, 5 INFN Pavia, 6 Università degli Studi di Bergamo, 7 INFN Trieste and Università degli Studi di Trieste 8 INFN Bologna and Università degli Studi di Bologna 9 INFN Torino and Università degli Studi di Torino 10 Università degli Studi di Trento and INFN Padova 11 Università degli Studi di Modena e Reggio Emilia and INFN Padova G. Batignani 1,2, S. Bettarini 1,2, F. Bosi 1,2, G. Calderini 1,2, R. Cenci 1,2, M. Dell’Orso 1,2, F. Forti 1,2, P.Giannetti 1,2, M. A. Giorgi 1,2, A. Lusiani 2,3, G. Marchiori 1,2, F. Morsani 2, N. Neri 2, E. Paoloni 1,2, G. Rizzo 1,2, J. Walsh 2 C. Andreoli 4,5, E. Pozzati 4,5,L. Ratti 4,5, V. Speziali 4,5, M. Manghisoni 5,6, V. Re 5,6, G. Traversi 5,6, L.Gaioni 4,5 L. Bosisio 7, G. Giacomini 7, L. Lanceri 7, I. Rachevskaia 7, L. Vitale 7, M. Bruschi 8, B. Giacobbe 8,A. Gabrielli 8, N. Semprini 8, R. Spighi 8, M. Villa 8, A. Zoccoli 8, D. Gamba 9, G. Giraudo 9, P. Mereu 9, G.F. Dalla Betta 10, G. Soncini 10, G. Fontana 10, L. Pancheri 10, G. Verzellesi 11 SLIM5-Silicon detectors with Low Interactions with Material G. Traversi a,b, A. Bulgheroni b,c, M. Caccia b,c, M. Jastrzab b,c, M. Manghisoni a,b, E. Pozzati b,d, L. Ratti b,d, V. Re a,b d Università degli Studi di Pavia b INFN a Università degli Studi di Bergamo c Università degli Studi dell’Insubria ILC VTX - Italy

Valerio Re - LCWS 2008, UIC, November 16-20, Backup slides

Valerio Re - LCWS 2008, UIC, November 16-20, /16 Design specifications for the ILC vertex detector 337 ns x s bunch train interval intertrain interval Digital readout 0.95 ms  15 um pixel pitch  O c  hits/train  the probability of a pixel being hit at least twice in a bunch train period   there is no need to include a pipeline for storing more than one hit per pixel (more than 99% of events recorded without ambiguity)  MAPS sensor operation is tailored on the structure of ILC beam  Detection phase (corresponding to the bunch train interval)  Readout phase (corresponding to the intertrain interval)  Data readout in the intertrain interval  system EMI insensitive  Sparsified readout based on the token passing scheme. This architecture was first implemented in the VIP1 chip (3-D MIT LL technology) by the ILC pixel design group at Fermilab  The beam structure of ILC will feature 2820 crossings in a 1 ms bunch train, with a DC of 0.5%. Assuming:  maximum hit occupancy 0.03 part./Xing/mm 2  3 pixels fire for every particle hitting  hit rate  250 hits/train/mm 2  digital readout adopted: 5um resolution requires 17.3 um pixel pitch

Valerio Re - LCWS 2008, UIC, November 16-20, Continuous Readout Architecture for “SuperB” MAPS (APSEL chips) Data-driven readout architecture with sparsification and timestamp information under development. In the active sensor area we need to minimize: –the logical blocks with PMOS to minimize the competitive nwell area and preserve the collection efficiency of the DNW sensor. –digital lines for point to point connections to allow scalability of the architecture with matrix dimensions and to reduce cross talk with the sensor underneath. Matrix subdivided in MacroPixel (MP=4x4) with point to point connection to the periphery readout logic: –Register hit MP & store timestamp –Enable MP readout –Receive, sparsify, format data to output bus Data lines in common 2 MP private lines MP 4x4 pixels Periphery readout logic Column enable lines in common Data out bus APSEL3D: 256 pixels APSEL4D: 4k pixels 50x50 um pitch

Valerio Re - LCWS 2008, UIC, November 16-20, SLIM5 CERN beam test with APSEL4D

Valerio Re - LCWS 2008, UIC, November 16-20, APSEL4D performance Tests of the APSEL4D chip: Optimization of the Deep NWell MAPS pixel with respect to previous versions – S/N up to 25 with reduced power consumption (~30  W/ch) Fast readout architecture (sparsification and timestamp) implemented in a 4k pixel matrix. Good sensitivity to e- from 90 Sr and to  from 55 Fe source Must operate at DVDD = 1V to reduce interferences 90 Sr electrons Landau mV S/N=23 Cluster signal (mV) Noise events APSEL4D - 55 Fe 5.9 keV calibration peak APSEL4D – 90 Sr test Fired pixel map with ½ MIP Good uniformity (the source was positioned on the left side of the matrix) APSEL4D - 32x128 pixels 50  m pixel pitch Average gain = 860 mV/fC Threshold dispersion = 60 e Average Signal for MIP (MPV) =980e-

Valerio Re - LCWS 2008, UIC, November 16-20, The APSEL4D pixel The sensing electrode has a T-shaped geometry, from the Deep N-Well and standard N-well extensions (A = 900  m 2 ) 50 m M1 M2 M3 M5 M6 M4 Analog routing (local) Digital routing (local, global) Shield ( VDD/GND) Sensor and analog lines had to be shielded from digital lines (continuous readout)

Valerio Re - LCWS 2008, UIC, November 16-20, A first look to the CERN beam test data Beam Profile – Telescope Module Strip Y hit correlation Telescope T2 vs T1Y hit correlation MAPS vs Telescope T1 y (cm) Beam test started last CERN (T9). Main goals: –DNW MAPS matrix resolution & efficiency –Thin (200  m) striplets module with FSSR2 readout chips –Demostrate LVL1 capability with tracker information sent to Associative Memories –New DAQ system developed for data push architecture