Low background radioactivity measurements Pia Loaiza Laboratoire Souterrain de Modane CNRS/CEA, France  Why do we need ultra-low radioactivity measurements?

Slides:



Advertisements
Similar presentations
Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété.
Advertisements

M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
ILIAS-JRA1 General meeting. Edinburgh. Sept Motivation Motivation Objectives Objectives Deliverables Deliverables Organization.
ILIAS J1, 3rd General Meeting, Paris, 14th Feb Coordinated gamma measurements in the underground labs Jan Kisiel Institute of Physics, University.
Low background facilities at LSM Pia Loaiza ILIAS meeting, Modane January 12 th 2005.
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
GERDA: GERmanium Detector Array
Status of activities of the WP4 on Radiopurity of Materials Pia Loaiza Laboratoire Souterrain de Modane JRA1 meeting Paris February 20 th, 2007.
WP3: R&D on ultra low-level detectors and facilities WP3: R&D on ultra low-level detectors and facilities LNGS: status and outlook.
Backgrounds. Their removal and avoidance Tom Shutt Princeton University.
WP3: R&D for ultra-low background techniques and facilities in the EU underground labs Dr. Matthias Laubenstein Laboratori Nazionali del Gran Sasso ITALY.
First results of the Ge semi-planar detector in LSM ILIAS JRA1 meeting-Zaragoza, 23 rd November 2007 Pia Loaiza Laboratoire Souterrain de Modane.
Background Study in NDBD Ming Shao. sources environmental gamma radioactivity cosmic rays Neutrons Radon contamination of materials which detectors and.
Status of activities of the WP4 on Radiopurity of Materials Pia Loaiza Laboratoire Souterrain de Modane JRA1 meeting Paris February 14 th, 2006.
Low radioactivity at the Modane Underground Laboratory
ILIAS Physics in deep underground laboratories JRA1 : Low background techniques WP4 : Radiopurity of materials Pía Loaiza Laboratoire Souterrain de Modane,
Alpha, Beta, and Gamma Decay
LAUNCH - Low-energy, Astroparticle Underground, Neutrino physics and Cosmology in Heidelberg, Low-level techniques applied in experiments.
Low-Background Activation Analysis NAA for ultrapure materials analysis Richard M. Lindstrom Analytical Chemistry Division National Institute of Standards.
Gamma spectrometry in deep sea water
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Cryogenic particle detection at the Canfranc Underground Laboratory First International Workshop for the Design of the ANDES Underground Laboratory Centro.
Status of the Se82 project Selenium production and purification JRA2-ILIAS Prague, April 20th, 2006, IDEA-N4 meetingDominique Lalanne.
Topical Workshop in Low Radioactivity Techniques, Sudbury, Canada, August 28-29, 2010 Surface cleaning techniques B. Majorowits a, M. Wójcik b, G. Zuzel.
Ultra-low background HPGe detector at ChyeongPyung Underground Laboratory TaeYeon Kim and KIMS(Korea Invisible Mass Search) Collaboration. * Contents *
The Recent Status of KIMS Group and New Plan Li Xin (Tsinghua University) KIMS collaboration Aug. 28th, 2006.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
HEP-Aachen/16-24 July 2003 L.Chabert IPNL Latest results ot the EDELWEISS experiment : L.Chabert Institut de Physique Nucléaire de Lyon ● CEA-Saclay DAPNIA/DRECAM.
Warszawa, July 3rd Measurements of natural radioactivity in European underground labs within the ILIAS project Jan Kisiel Institute of Physics, University.
May 6, 2006Henderson Dusel Capstone Meeting Low Background Counting A Facility Wish List for the New Underground Laboratory F. Calaprice.
JRA1 – Low Background Techniques for Deep Underground Science Status report on WP1 Measurement of the backgrounds in the Deep Underground sites WP coordinator:
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Stellenbosch University
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
Pia Loaiza AARM March 2010 Background studies for EURECA EURECA The ‘submarine’ (water tank) design: background expected from stainless steel structure.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Trace element analysis of K, U and Th in high purity materials by Neutron Activation Analysis P. ILA Dept. of Earth Atmospheric & Planetary Sciences Massachusetts.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Pia Loaiza AARM-Berkeley March 2010
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
Sep. 22, 2011 Seoul National University Jae Keum Lee KIMS Background 1 China-Korea Workshop 2011 September 22-23, 2011.
GeMPI-type low background counting system for SURF Kara Keeter 15 September 2014.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
V. Egorov. JINR + LSM V. Egorov = The love story 1991 Orsay S.Jullian and D.Lalanne proposed to bring our 2β-spectrometer to Modane 1993 TGV.
From Edelweiss I to Edelweiss II
Status of ULE-HPGe Experiment for WIMP Search in YangYang
Application of AMS for the Analysis of
Fast neutron flux measurement in CJPL
The COBRA Experiment: Future Prospects
Pulse-shape discrimination with Cs2HfCl6 crystal
Prompt Gamma Activation Analysis on 76Ge
Measurement of surface radioactivity by Alpha/Beta detection
• • • Ge measurements for SuperNEMO
Status of Neutron flux Analysis in KIMS experiment
BACKGROUND STUDY IN CRESST
Presentation transcript:

Low background radioactivity measurements Pia Loaiza Laboratoire Souterrain de Modane CNRS/CEA, France  Why do we need ultra-low radioactivity measurements?  Low background gamma spectrometry:  How to achieve high sensitivity ?  Material selection in astroparticle experiments  Geochemistry applications  Environmental control  Other applications

Pia Loaiza ANDES Workshop April  U,Th,K (n, , ,  ) Shielding close mat. e-e- n Det. Rn External gamma radiation, neutrons Rn and its progenies Radioimpurities in shielding materials Radioimpurities in materials close to detectors Contaminants in detector itself material screening Source Reduction Shielding Injection of Radon-reduced air Why do we need measurements of ultra-low radioactivity levels ?  Dark matter and 0  experiments : natural radioactivity induces background in rare event searches experiments  need to reduce drastically the radioactive background by material selection

Pia Loaiza ANDES Workshop April ,4 kg of cables ~10 mBq/kg will cause 0.7 neutron/ kg Ge/ year [20-200] keV, (gamma background shielded by Pb)  on the limit of acceptable levels Edelweiss II, NEMO3 materials screened with a sensitivity about 1 mBq/kg ‘normal’ levels ~10 Bq/kg How low is ‘low’ ?  ROCK in the Laboratoire Souterrain de Modane: 238 U : (10.4  2.5 ) Bq/kg 232 Th : (9.96  0.82) Bq/kg  CABLES in Edelweiss II: 226 Ra : (10  7) mBq/kg 228 Th < 6 mBq/kg  COPPER in Edelweiss II: 226 Ra : < 40  Bq/kg 228 Th : (24 +/- 12)  Bq/kg ~  Bq/kg is OK (1 Bq= 1 disintegration/s)

Pia Loaiza ANDES Workshop April Gamma background in EDWII: 200 evts/kg Ge/day [ ] keV 80 evts/kg Ge/day [20-200] keV EURECA will need Cu with 226 Ra, 228 Th ~ 20  Bq/kg to reach dark matter sensitivity goal SuperNEMO needs 0  sources : 208 Tl < 2  Bq/kg & 214 Bi < 10  Bq/kg Present and future

Pia Loaiza ANDES Workshop April U decay chain Mass spectrometry, Neutron Activation Analysis, Alpha-spectrometry Sub-chains HOW TO MEASURE? ICP-MS ~ 0.01 ppb U/Th (about 0.1 mBq/kg) Mass spectrometry Neutron Activation Analysis Alpha-spectrometry Gamma spectrometry

Pia Loaiza ANDES Workshop April Th decay chain Gamma emitters Sub-chains Mass spectrometry, Neutron Activation Analysis, Alpha spectrometry

Pia Loaiza ANDES Workshop April Low background Ge detectors for gamma-ray spectrometry  Backg. R . M. I.  t Detection Limit  R = resolution  = efficiency I = intensity of the line M = sample mass t = time of measurement To improve sensitivity  BACKGROUND REDUCTION  Cosmic rays reduction: go underground  Environmental gamma reduction: shielding  Intrinsic background reduction: material selection

Pia Loaiza ANDES Workshop April Background sources in Ge gamma-ray spectrometry Muons on surface GO UNDERGROUND! (Applied Rad and Isotopes 53 (2000) 191) Background of HPGe spectrometer: 3300 m.w.e + shielding 15 m.w.e + shielding muons/m 2 day on surface 26 muons/m 2 day at 3300 m.w.e 15 m.w.e

Pia Loaiza ANDES Workshop April DET.  e-e- neutron 210 Bi ( 210 Pb) -- 511 keV Rn e-e- e+e+ Pb Background sources in Ge gamma spectrometry deep underground SOURCEREDUCTION  External gamma radiation (up to 2.6 MeV 208 Tl)Shielding  Radioimpurities in cryostatMaterial selection  Rn and its progeniesRn reduced air  Radioimpurities in the shielding materialsMaterial selection

Pia Loaiza ANDES Workshop April Ge detector types COAXIALWELLPLANAR high sample mass high efficiency high resolution at low energies The choice depends on what we want to measure

Pia Loaiza ANDES Workshop April Gamma-ray spectrometry at LSM 13 HPGe detectors for: Material screening for SuperNEMO, Edelweiss and ultra low background instrumentation (coaxial, planar) Environmental studies (well type, planar) Environmental monitoring (well type) Developpement of low background Ge for  -spectromety:  Planar, P. Loaiza et al, NIM A 634 (2011) 64–70  Coaxial (arrived 2011)

Pia Loaiza ANDES Workshop April Selected results of radioactivity measurements for material selection: Where do we stand in terms of sensibility? MaterialDetectorMass (g) Time (h) 210 Pb (mBq/kg) 234 Th( 238 U ) (mBq/kg) 226 Ra (mBq/kg) 228 Ra (mBq/kg) 228 Th (mBq/kg) AluminiumMafalda (Planar) < 9<3<0.9<1 1.0  0.3 EpoxyMafalda (Planar)  714  39292 < 6 10  3 GlueIris (Coaxial) < 0.135< 0.274< CopperGeMPI2 (coaxial) <0.04<  0.01 Low energies: 46 keV, 63 keV, 92 keV Higher energies: 200 keV < E < 3000 keV

Pia Loaiza ANDES Workshop April Studies in lake sediments use radionucleide profiles to date and obtain the sedimentation rates. The requirement on sensitivity is less stringent than those for material selection, but still need low background detectors. Geodynamic studies Lac du Bourget Dating using artificial radionucleides 137 Cs and 241 Am 1986 Tchernobyl 1963 Nuclear weapons tests 210 Pb excess is used to determine the sedimentation rate ( in this case 3.9 mm/year)

Pia Loaiza ANDES Workshop April Lago del Desierto Lakes Puyehue and Icalma : F. Arnaud et al, Science of the Total Environment 366 (2006) Chile and Peru: Muñoz et al, Deep-Sea Research II 51 (2004) Geodynamic studies in the southern hemisphere Kastner et al, Global and Planetary Change 72 (2010)

Pia Loaiza ANDES Workshop April Be and 137 Cs concentration in the atmosphere Monitoring of radioactive contamination in the atmosphere Measurements of artificial radionuclides in certain samples require very low backgrounds. Environmental monitoring

Pia Loaiza ANDES Workshop April Bordeaux wine dating The concentration of 137 Cs provides a simple method to estimate the wine age. Material selection for integrated circuits Other applications Atmospheric neutrons and on-chip radioactive impurities (  -particle emitters), induce soft-errors in the semiconductors Material selection using high sensitive gamma- spectrometres is being explored G. Warot, P. Loaiza REE 3, Mars 2010, 51 Philippe Hubert, Europhysics News (2005) Vol. 36 No. 1

Pia Loaiza ANDES Workshop April SUMMARY  Ultra-low radioactivity measurements are needed for material selection in rare event searches, like 0  experiments and dark matter Required levels today ~ mBq/kg Required levels in future ~ 10  Bq/kg  Method of measurement depends on the radioelement: Mass spectrometry (ICP-MS) for long-lived isotopes, gamma-ray spectrometry for gamma-ray emitters  To improve sensitivity in Ge for  -ray spectrometry background must be reduced: - Cosmic rays reduction: go underground - Environmental gamma reduction: shielding - Intrinsic background reduction: material selection  Low-background gamma-ray spectrometry used in several fields: astroparticle physics, geodynamic studies, environmental monitoring, …  Low background Ge for gamma-spectrometry is an ideal tool to be placed in a young underground laboratory: needed for rare-event searches but also may be used for several applications. Low cost.

Pia Loaiza ANDES Workshop April

Pia Loaiza ANDES Workshop April Costs  Detector with dedicated low-background developpement: between 100 kEuro and 200 kEuro, depending on crystal mass, cooling system,…  Shielding: Archeological lead: about Euros/kg, Low activity lead: about 2 Euros/kg Lead casting: around 20 kEuros  Commercial acquisition system (hardware + software) : about 10 kEuro

Pia Loaiza ANDES Workshop April Which sensitivities for the future experiments? EURECA: Present  rejection factor ~ 10 5 According to simulations: ~10 5 evts/year in 10 keV<E<50 keV in 1000 kg of Ge from Cu 226Ra, 228Th : 20  Bq/kg The necessary sensitivity levels are reached, but time-consuming measurements needed need more detectors SuperNEMO 40 mBq/kg in 214Bi 3 mBq/kg in 228Th needed for PMTS further reduce background?

Pia Loaiza ANDES Workshop April Performances Planar Resolution: 850 eV at 122 keV Integral count rate 20 keV <E < 1500 keV : 150 cpd All peak-rates < 1 c/day, except 210 Pb

Pia Loaiza ANDES Workshop April Bruit de fond intégral de quelques détecteurs Ge pour la spectrométrie gamma, divisé par la masse du cristal, en fonction de la profondeur des différents sites souterrains. Le détecteur ‘LSCE’ est de type puits et installé au Laboratoire Souterrain de Modane, ‘JRC-IRMM’ correspond à un détecteur de type coaxial installé au Laboratoire Hades, en Belgique, ‘LNGS’ correspond au taux d’un détecteur coaxial appartenant au groupe du Max Planck Institute de Heidelberg, installé au Gran Sasso. La composante cosmique ne contribue pas au bruit de fond au IRMM : le taux intégral des détecteurs IRMM est comparable à ceux de sites plus profonds

Pia Loaiza ANDES Workshop April Radionuclides in the U and Th decay series are useful chronometers for the determination of many processes in the environment. The low natural radioactivity encountered necessitate instrumentation capable of measuring very low radionuclide concentrations. Some applications : Quantitative evaluation of both horizontal and vertical mixing rates in the open ocean. Determination of the rate of particle deposition on the marine sediment layer (originated by both biological and physical processes). The decay of 210 Pb provides a dating method which has been applied to lake sediments.