Stable and Tuneable Laser Plasma Accelerators

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
L O A Journées accélérateurs, Roscoff, FRANCE, 9-12 (2005) Laser-plasma accelerators: Status and perspectives Victor Malka LOA, ENSTA – CNRS - École Polytechnique,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
UCLA Experiments with short single e-bunch using preformed and beam ionized plasma Retain ability to run short single bunch with pre-ionized plasma Ken.
L O A Victor Malka LOA, ENSTA – CNRS - École Polytechnique, Palaiseau cedex, France COULOMB05, Senagolia, Italy, September (2005) State of.
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
X-ray Generation in Plasma Using Laser-Accelerated Electrons Rahul Shah, F. Albert, R. Fitour, K. Taphuoc, and A. Rousse Laboratoire d’Optique Appliquée.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
Enhancement of electron injection using two auxiliary interfering-pulses in LWFA Yan Yin ( 银燕 ) Department of Physics National University of Defense Technology.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
1D Relativistic Plasma Equations (without laser) cold plasma Consider an electron plasma with density N(x,t), velocity u(x,t), and electric field E(x,t),
How long can one ignore this? Groupe d’Accélération par Laser et Ondes Plasma Recent Developments und Future Challenges in Laser-Wakefield (Plasma) Acceleration.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Eric Esarey W. Leemans, C. Geddes, C. Schroeder, S. Toth,
Temporal characterization of laser accelerated electron bunches using coherent THz Wim Leemans and members of the LOASIS Program Lawrence Berkeley National.
1 Gas-Filled Capillary Discharge Waveguides Simon Hooker, Tony Gonsalves & Tom Rowlands-Rees Collaborations Alpha-X Basic Technology programme (Dino Jaroszynski.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Winni Decking Impressions from the Dream Beams Symposium Max-Planck-Institut fuer Quantenoptik (MPQ)
All-optical accelerators
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
While the rare half of the plasma bubble is accelerating for electrons, the front half of it is decelerating. For positive ions it is just the opposite.
A.P. Potylitsyn, S.Yu. Gogolev
Paris, / 02 / 2008ELI kick off Meeting Danilo Giulietti Physics Department of the University and INFN, Pisa, Italy
1 1 Office of Science C. Schroeder, E. Esarey, C. Benedetti, C. Geddes, W. Leemans Lawrence Berkeley National Laboratory FACET-II Science Opportunities.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Accelerator Laboratory of Tsinghua University Generation, measurement and applications of high brightness electron beam Dao Xiang Apr-17, /37.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Summary WG5 R&D for Innovative Accelerators Greg LeBlanc.
Strategies for Future Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Rechatin, & V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole.
1March 28 - April 1, 2016 Havana, Physics and Applications of High Brightness Beams Advanced electron acceleration experiments planned at the CILEX-Apollon.
GRK-1203 Workshop Oelde Watching a laser pulse at work
Friedrich-Schiller-University Jena
Introduction to Plasma Physics and Plasma-based Acceleration Wakefield acceleration Various images provided by R. Bingham.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Laser Plasma Accelerators: Principle & applications
Electron acceleration behind self-modulating proton beam in plasma with a density gradient Alexey Petrenko.
New concept of light ion acceleration from low-density target
The 2nd European Advanced Accelerator Concepts Workshop
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
ULTRA-HIGH BRIGHTNESS ELECTRON BEAMS BY PLASMA BASED INJECTORS FOR ALL
Laboratoire d’Optique Appliquée
EUCARD Emittance discussion
Wakefield Accelerator
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
شتاب الکترون در برهم­کنش با پالس لیزری نامتقارن
Laboratori Nazionali di Frascati
Beam loading at a nanocoulomb-class laser wakefield accelerator
Presentation transcript:

Stable and Tuneable Laser Plasma Accelerators J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d’Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761 Palaiseau, FRANCE Partially supported by CARE/PHIN FP6 project LOA INFN, Frascati, November 16 (2006)

INFN, Frascati, November 16 (2006) Summary Part 1 : Laser plasma accelerator : motivation Part 2 : Production of monoenergetic electron beam Part 3 : New scheme of injection : toward a stable, tuneable and quasi monoenergetic electron beam. Part 4 : Conclusion and perspectives LOA INFN, Frascati, November 16 (2006)

Classical accelerator limitations E-field max ≈ few 10 MeV /meter (Breakdown) R>Rmin Synchrotron radiation Courtesy of W. Mori & L. da Silva Plasma cavity 100 mm 1 m RF cavity LOA INFN, Frascati, November 16 (2006)

INFN, Frascati, November 16 (2006) Laser plasma injector Scheme of principle Experimental set up LOA INFN, Frascati, November 16 (2006)

Energy distribution improvements: The Bubble regime Charge in the peak : 200-300 pC Divergence = 6 mrad Experiment PIC At LOA J. Faure et al. Nature (2004) LOA INFN, Frascati, November 16 (2006)

Quasi-monoenergetic beams reported in the litterature Article Energy dE/E Charge Ne Intensity tL/Tp Remark Name Lab [MeV] [%] [pC] [x1018 /cm 3 ] [x10 18 W/cm 2 ] Mangles Nature (2004) RAL 73 6 22 20 2,5 1,6 Geddes Nature (2004) L'OASIS 86 2 320 19 11 2,2 Channel Faure Nature (2004) LOA 170 25 500 6 3 0,7 Hidding PRL (2006) JETI 47 9 0,32 40 50 4,6 Hsieh PRL (2006) IAMS 55 336 40 2,6 Hosokai PRE (2006) U. Tokyo 11,5 10 10 80 22 3,0 Preplasma Miura APL (2005) AIST 7 20 432E-6 130 5 5,1 Hafz PRE (2006) KERI 4,3 93 200 28 1 33,4 Mori ArXiv (2006) JAERI 20 24 0,8 50 0,9 4,5 Mangles PRL (2006) Lund LC 150 20 20 5 1,4 Several groups have obtained quasi monoenergetic e beam but at higher density (tL>tp) LOA INFN, Frascati, November 16 (2006)

GeV electron beams from a « centimetre-scale » accelerator 310-μm-diameter channel capillary P = 40 TW density 4.3×1018 cm−3. Leemans et al., Nature Physics, september 2006 LOA INFN, Frascati, November 16 (2006)

INFN, Frascati, November 16 (2006) Laser plasma injector : GeV electron beams w = 20 m t 30 fs   a 4 l . 8 P 200 TW n p 1 5 × 10 18 cm - 3 After 5 Zr / 7.5 mm 0.5 1 1.5 2 2.5 800 1200 1600 2000 Energy (MeV) f(E) (a.u.)   Courtesy of UCLA& Golp groups   LOA INFN, Frascati, November 16 (2006)

INFN, Frascati, November 16 (2006) Laser plasma injector : + good efficiency : Ee-beam/Elaser  10 % + simple device + with channel : GeV range is obtained1 with moderate laser power* *But since the efficiency is conserved a compromise between charge and energy must be found Stability not yet demonstrated : in progress - Energy spread still too large for some applications : dE/E  few %   * Courtesy of S. Hoocker or F. S. Tzung PRL (2004 LOA INFN, Frascati, November 16 (2006)

INFN, Frascati, November 16 (2006) Controlling the injection pump injection Counter-propagating geometry: Plasma wave Principle: Pump beam electrons Injection beam Ponderomotive force of beatwave: Fp ~ 2a0a1/λ0 (a0 et a1 can be “weak”)y Boost electrons locally and injects them: y INJECTION IS LOCAL IN FIRST BUCKET y E. Esarey et al, PRL 79, 2682 (1997), G. Fubiani et al. (PRE 2004) LOA INFN, Frascati, November 16 (2006)

Experimental set-up to shadowgraphy diagnostic electron spectrometer Probe beam LANEX Gas jet B Field Injection beam Pump beam 250 mJ, 30 fs ffwhm=30 µm I ~ 4×1017 W/cm2 a1=0.4 700 mJ, 30 fs, ffwhm=16 µm I ~ 3×1018 W/cm2 a0=1.2

INFN, Frascati, November 16 (2006) LOA INFN, Frascati, November 16 (2006)

From self-injection to external injection pump Single beam ne=1.25×1019 cm-3 ne=1019 cm-3 Self-injection Threshold ne=7.5×1018 cm-3 pump injection 2 beams ne=7.5×1018 cm-3 LOA INFN, Frascati, November 16 (2006)

Optical injection by colliding pulses leads to stable monoenergetic beams STATISTICS value and standard deviation Bunch charge= 19pC, s = 6.8 pC Peak energy= 117MeV, s = 7 MeV DE= 13MeV, s = 2.5 MeV DE/E= 11 %, s = 2 % Divergence= 5.7 mrad Pointing stability= 1.8 mrad *Charge measurements with absolute calibration of Lanex film (ICT gave a factor of 8 higher charge) LOA INFN, Frascati, November 16 (2006)

Monoenergetic bunch comes from colliding pulses: polarization test Parallel polarization Crossed polarization LOA INFN, Frascati, November 16 (2006)

Controlling the bunch energy by controlling the acceleration length By changing delay between pulses: Change collision point Change effective acceleration length Tune bunch energy Pump beam Injection beam 2 mm Gas jet LOA INFN, Frascati, November 16 (2006)

Tunable monoenergetic bunches pump injection late injection early injection middle injection Zinj=225 μm Zinj=125 μm Zinj=25 μm Zinj=-75 μm Zinj=-175 μm Zinj=-275 μm Zinj=-375 μm LOA INFN, Frascati, November 16 (2006)

Tunable monoenergetic electrons bunches: 190 MeV gain in 700 µm: E=270 GV/m Compare with Emax=mcwp/e=250 GV/m at ne=7.5×1018 cm-3 LOA INFN, Frascati, November 16 (2006)

Conclusions / perspectives SUMMARY Optical injection by colliding pulse: it works ! Monoenergetic beams trapped in first bucket Enhances dramatically stability Energy is tunable: 15-300 MeV Charge up to 80 pC in monoenergetic bunch dE/E down to 5 % (spectrometer resolution), dE ~ 10-20 MeV Duration shorter than 10 fs. PERSPECTIVES Q Combine with waveguide: tunable up to few GeV’s with dE/E ~ 1 % Design future accelerators Model the problem for further optimization: higher charge Stable source: extremely important accelerator development (laser based accelerator design) light source development for XFEL applications (chemistry, radiotherapy, material science) LOA INFN, Frascati, November 16 (2006)

LOA/CARE_PHIN : List of publications in refereed journals 16 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses J. Faure, C. Rechatin, A. Norlin, A. F. Lifschitz, Y. Glinec, V. Malka, Accepted in Nature (2006) 15 Staged concept of laser plasma acceleration toward multi GeV electrons beams V. Malka, J. Faure, Y. Glinec, A. Lifschitz, to be published to PR -STA 14 Absolute calibration for a broadrange single shot electron spectrometer Y. Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, et al., RS 2006I. 13 Ultra short laser pulses and ultra short electron bunches generated in relativistic laser plasma interaction. J. Faure, Y. Glinec, G. Gallot, and V. Malka, Phys. Plasmas 13, 056706 (2006). 12 Design of a compact GeV Laser Plasma Accelerator V.Malka, A. F. Lifschitz, J. Faure, Y. Glinec, NIM A 561, p310-131 (2006) 11 Wakefield acceleration of low energy electron bunches in the weakly nonlinera regime A. F. Lifschitz, J. Faure, Y. Glinec, V. Malka, NIM A 561, p314-319 (2006) 10 Proposed Scheme for Compact GeV Laser Plasma Accelerator A. Lifschitz, J. Faure, Y. Glinec, P. Mora, and V. Malka, Laser and Particle Beams 24, 255-259 (2006) 9 Radiotherapy with laser-plasma accelerators: application of an experimental quasi-monoenergetic electron beam Y. Glinec, J. Faure, T. Fuchs, H. Szymanowski, U. Oelfke, and V. Malka, Med. Phys. 33, (1) 155-162 (2006) 8 Laser-plasma accelerator: status and perspectives V. Malka, J. Faure, Y. Glinec, A.F. Lifschitz, Royal Society Philosophical Transactions A, 364, 1840, 601-610 (2006) 7 Observation of laser pulse self-compression in nonlinear plasma waves J. Faure, Y. Glinec, J. Santos, V. Malka, S. Kiselev, A. Pukhov, and T. Hosokai, Phys. Rev. Lett. 95, 205003 (2005). 6 Laser-plasma accelerators: A new tool for science and for society V. Malka, J. Faure, Y. Glinec, and A.F. Lifschitz, Plasmas Physics and Controlled Fusion 47 (2005) B481-B490. 5 GeV Wakefield acceleration of low energy electron bunches using Petawatt lasers A.F. Lifschitz, J. Faure, V. Malka, and P. Mora, Phys. of Plasmas 12, 0931404 (2005). 4 Generation of quasi-monoenergetic electron beams using ultrashort and ultraintense laser pulses Y. Glinec, J. Faure, A. Pukhov, S. Gordiendko, S. Kiselev, V. Malka, Laser and Particle beams 23, 161-166 (2005). 3 Monoenergetic electron beam optimisation in the bubble regime V. Malka, J. Faure, Y. Glinec, A. Pukhov, J.P. Rousseau, Phys. of Plasmas 12, 056702 (2005). 2 High-resolution -ray radiography produced by a laser-plasma driven electron source Y. Glinec, J. Faure, L. Le Dain, et al., Phys. Rev. Lett.94 (2005). 1 A laser-plasma accelerator producing monoenergetic electron beams J. Faure, Y. Glinec, A. Pukhov, et al., Nature 431, 541, 30 septembre (2004). INFN, Frascati, November 15 (2006)