Presentation is loading. Please wait.

Presentation is loading. Please wait.

8-10 June Institut Henri Poincaré, Paris, France

Similar presentations


Presentation on theme: "8-10 June Institut Henri Poincaré, Paris, France"— Presentation transcript:

1 8-10 June 2005 -Institut Henri Poincaré, Paris, France
Conceptual design of a laser wakefield experiment with external bunch injection in front of the laser pulse. Arsen Khachatryan, Fred van Goor, Mark Luttikhof, Arie Irman, Jeroen Verschuur, Bert Bastiaens, and Klaus Boller. University of Twente, Enschede, The Netherlands. International Workshop on High Energy Electron Acceleration Using Plasmas 2005 8-10 June Institut Henri Poincaré, Paris, France

2 Dutch Laser Wakefield Accelerators Program
University of Twente Laser Physics group University of Eindhoven Physics and Applications of Ion Beams and Accelerators group FOM-Institute for Plasma Physics “Rijnhuizen” Laser-Plasma XUV Source and XUV optics group High Energy Electron Acceleration Using Plasmas 2005

3 High Energy Electron Acceleration Using Plasmas 2005
Support and Topics Foundation for Fundamental Research on Matter (FOM) Project duration: External injection schemes (TUE, UT) Photo injector (TUE, UT) Ti-Sapphire laser (UT) Plasma channel (FOM-Rijnhuizen) High Energy Electron Acceleration Using Plasmas 2005

4 LWFA The Injection Problem External Injection Internal Injection
(wavebreaking) Injection in wakefield (behind laser) Injection in front of laser Self-modulated regime All-Optical injection Bubble regime High Energy Electron Acceleration Using Plasmas 2005

5 High Energy Electron Acceleration Using Plasmas 2005

6 High Energy Electron Acceleration Using Plasmas 2005
Bunch dynamics Laser: a0 = 1.0 gg = 30 Spot radius = 30.5 mm Pulse duration = 30 fs Plasma channel: np = 2x1018 cm-3 lp = 24 mm Length = 2.3 cm Injected bunch: FWHM duration = 300 fs FWHM width = 82 mm energy = 1.6 MeV Accelerated bunch: Emittance = 8 p-mm-mrad Length (rms) = 1 mm Radius (rms) = 1.3 mm energy = 453 MeV energy spread = 2.8% Collection efficiency = 44% High Energy Electron Acceleration Using Plasmas 2005

7 High Energy Electron Acceleration Using Plasmas 2005
Longitudinal field Normalized Ez kpr kp(z-ct) High Energy Electron Acceleration Using Plasmas 2005

8 High Energy Electron Acceleration Using Plasmas 2005
Transverse field Focusing field kpr kp(z-ct) High Energy Electron Acceleration Using Plasmas 2005

9 High Energy Electron Acceleration Using Plasmas 2005
Average Bunch Energy High Energy Electron Acceleration Using Plasmas 2005

10 High Energy Electron Acceleration Using Plasmas 2005
rms Bunch Radius High Energy Electron Acceleration Using Plasmas 2005

11 High Energy Electron Acceleration Using Plasmas 2005
rms Bunch Length High Energy Electron Acceleration Using Plasmas 2005

12 High Energy Electron Acceleration Using Plasmas 2005
rms energy spread High Energy Electron Acceleration Using Plasmas 2005

13 Normalized rms emittance
High Energy Electron Acceleration Using Plasmas 2005

14 High Energy Electron Acceleration Using Plasmas 2005
Parameters for Proof-of-Principle Experiment with 1J, (30-50) fs Laser Pulse. Laser pulse: Wavelength: 0.8 m Peak intensity at focus: (16)1018 W/cm2 Normalized amplitude, a0: 0.71.7 z: m r: m Plasma channel: On-axis electron concentration, np(0): (0.72) 1018 cm-3 On-axis plasma wavelength, p: (2440) m Channel length: (25) cm Injected electron bunch: Energy mec20: (14) MeV Bunch duration: (200700) fs Bunch diameter: (100200) m Number of electrons: 108109 ((16160) pC) Accelerated electron bunch: Energy mec20: (0.24.5) GeV Bunch duration: (110) fs Bunch diameter: (210) m Number of electrons: up to 108 (16 pC)  beam loading limit High Energy Electron Acceleration Using Plasmas 2005

15 High Energy Electron Acceleration Using Plasmas 2005
The New Scheme + Plasma channel Parabolic radial density profile, np ~ cm-3. Low-energy electron bunch: Energy (g0) – hundreds keVs to few MeVs Length (L0) – up to a few hundreds microns Trapping distance: Ltr ~2 g02L0 = Ultra-short relativistic electron bunch: Length – ~ 1 micron (few fs); Diameter – few microns; Energy – up to a few GeV’s; Number of electrons – ~108 (~10 pC, beam-loading limit) High-intensity laser pulse: Intensity >1018 W/cm2 + High Energy Electron Acceleration Using Plasmas 2005

16 High Energy Electron Acceleration Using Plasmas 2005
Experimental Set-Up e-bunch Parabolic mirror Linac Metal photo cathode Plasma channel 3rd harmonic converter Laser pulse High Energy Electron Acceleration Using Plasmas 2005

17 Advantages of the LWFA scheme
No ultra-short electron bunch is needed before the acceleration in the laser wakefield; No femtosecond synchronization is required while injecting the bunch in the wakefield; No transverse size of a few micron and precise transverse positioning are needed for the injecting e-bunch; Effective longitudinal and transverse electron-bunch compression; Good quality of the accelerated bunch; Scaling to high energies (GeV’s) is possible. High Energy Electron Acceleration Using Plasmas 2005

18 High Energy Electron Acceleration Using Plasmas 2005
End High Energy Electron Acceleration Using Plasmas 2005


Download ppt "8-10 June Institut Henri Poincaré, Paris, France"

Similar presentations


Ads by Google