Presentation is loading. Please wait.

Presentation is loading. Please wait.

Temporal characterization of laser accelerated electron bunches using coherent THz Wim Leemans and members of the LOASIS Program Lawrence Berkeley National.

Similar presentations


Presentation on theme: "Temporal characterization of laser accelerated electron bunches using coherent THz Wim Leemans and members of the LOASIS Program Lawrence Berkeley National."— Presentation transcript:

1 Temporal characterization of laser accelerated electron bunches using coherent THz
Wim Leemans and members of the LOASIS Program Lawrence Berkeley National Laboratory BIW 2006 May 1-4, 2006 Website:

2 Laser wakefield acceleration
Ionization of gas by laser Ponderomotive push of plasma electrons Restoring force from due to charge separation Density oscillation: strong electric fields (100 GV/m) d=2 mm plasma LWFA: two regimes for bunch production Large-energy-spread bunch (unchanneled) Quasi-mono-energetic bunch (channeled) Sprangle et al. (92); Antonsen, Mora (92); Andreev et al. (92); Esarey et al. (94); Mori et al. (94)

3 } Tool: LOASIS multi-terawatt laser 10 TW Ti:sapphire
100 TW-class Ti:sapphire Shielded target room LOASIS laser system Three main amplifiers (Ti:sapphire,10 Hz): - Godzilla: J in fs (10-15 TW) ===> main drive beam (to date) - Chihuahua: 20-50 mJ in 50 fs ===> ignitor beam mJ in ps ===> heater beam mJ in 50 fs ===> colliding beam - T-REX: 2-3 J in fs ===> capillary experiments } guiding

4 e-beam on phosphor screen
Mid 90’s -2003: short pulse laser systems generate electron beams with 100 % energy spread Jet Laser beam Electron beam Magnet Phosphor OAP Gas Jet Charge Detector vacuum CCD e-beam spectrum Energy spectrum obtained with a magnetic spectrometer LWFA experiments produce electrons with: 1-100 MeV, multi-nC, ~100 fs, ~10 mrad divergence ~10 mrad e-beam on phosphor screen Modena et al. (95); Nakajima et al. (95); Umstadter et al. (96); Ting et al. (97); Gahn et al. (99); Leemans et al. (01); Malka et al. (01)

5 How short are the bunches ?
Simulations predict fs Can we measure them? (Is the linac stable enough?) Coherent emission Dominates if sz < l

6 Diagnostic relies on coherent transition radiation
from the plasma-vacuum boundary Laser-Wakefield Accelerator Schematic for Transition Radiation Leemans et al., Phys. Rev. Lett. (2003); Schroeder et al., Phys. Rev. E (2004); Van Tilborg et al., Phys. Rev. Lett. (2006) Diagnostic implementation: • Use radiated field • Couple out of vacuum chamber Boundary size 

7 In detail: CTR from Plasma-vacuum boundary

8 CTR (THz) in spectral and temporal domain
Diffraction function (boundary size ) Intense THz source MV/cm at focus (up to 10’s of J in THz pulse) ‘traditional’ laser-based sources deliver <100 kV/cm Form factor Single electron TR CTR spectrum CTR in time Schroeder et al., Phys. Rev. E (04) van Tilborg et al., Laser Part. Beams (04) van Tilborg et al., Phys. Plasmas, submitted

9 Temporal THz measurement: electro-optic sampling
Valdmanis (82); Yariv (88); Gallot (99); Yan (00); Fitch(01); Wilke(02); Berden(04); Cavalieri(05) Phase shift  is proportional to THz field

10 Electro-Optic measurement of Coherent Transition Radiation yields information on laser accelerated electron beam: < 50 fs bunches W.P. Leemans et al., PRL2003 C.B. Schroeder et al., PRE2004 J. Van Tilborg et al., Laser and Particle Beams 2004; PRL 2006

11 Choice of EO-material affects temporal resolution
• CTR based on 50 fs (rms) Gaussian electron bunch • ZnTe vs GaP: • ZnTe cutoff ~ 4 THz • GaP cutoff ~ 8 THz

12 Scanning technique provides bunch duration:
Resolution limited by crystal properties Scanning technique (takes 1.5 hours) < 50 fs bunches Synchronization Charge and bunch stability Van Tilborg et al., PRL2006, Phys. Plasmas06

13 G. Berden et al., Phys. Rev. Lett. 93, 114802 (2004)
Single-Shot Technique for EO detection of THz pulses: Information on every bunch 3 ps 50 fs < 50 fs bunches peak E-field of ECTR≈150 kV/cm J. van Tilborg et al., submitted to PRL G. Berden et al., Phys. Rev. Lett. 93, (2004)

14 Experiments show double THz pulse
Red curves are double-THz-pulse-based waveforms and spectra Spectrum A Shot A Use GaP instead of ZnTe Higher bandwidth Observation Temporal waveform: double pulse Spectral modulation Why? Double bunch e-beam ? Spectrum B Shot B

15 Single-shot 2D EO imaging provides spatial profile of THz beam
Measure 2 D THz profile Focused THz beam Collimated laser beam Step laser beam in time 5 mm 7 mm Shot 2 =796 fs Shot 1 =546 fs Shot 3 =1154 fs Van Tilborg et al., to be published

16 to analyze spatio-temporal effects of coma
‘Ray Optics’ approach to analyze spatio-temporal effects of coma =1154 fs Shot 3

17 Propagation of a single-cycle pulse through focus
no coma t=0 t=-0.3 t=+0.3 t=-0.6 t=+0.6 t=0 t=+0.3 t=+0.6 t=-0.3 t=-0.6 with coma

18 ‘Ray optics’ model for waveform and spectrum
No coma With coma

19 2004 Results: High-Quality Bunches
Large spot size, no channel (ZR order of gas jet length) RAL/IC: (Mangles et al.) No Channel: 21019 cm-3 Laser: 12 TW, 40 fs, 0.5 J, 2.51018 W/cm2, 25 m E-bunch: 1.4108 (22 pC), 70 MeV, E/E=3%, 87 mrad LOA: (Faure et al.) No Channel: 0.5-2x1019 cm-3 Laser: 30 TW, 30 fs, 1 J, 18 m E-bunch: 3109 (0.5 nC), 170 MeV, E/E=24%,10 mrad Controlled laser guiding with channel LBNL: (Geddes et al.) Plasma Channel: 1-4x1019 cm-3 Laser: 8-9 TW, 8.5 m, 55 fs E-bunch: 2109 (0.3 nC), 86 MeV, E/E=1-2%, 3 mrad

20 Plasma Channel Production: Hydrodynamic Ignitor-Heater in H2 Gas Jet
CCD & Spectrometer 2w probe Interferometer Cylindrical Mirror Heater beam 100mJ 250ps e- H, He gas jet Main beam <500mJ >50fs Pre ionizing Beam 20mJ Plasma channel Ti:sapphire * P. Volfbeyn, E. Esarey and W.P. Leemans, Phys. Plasmas 1999 C.G.R. Geddes et al., Nature 431, p. 543 (2004), Phys.Rev.Lett. (2005).

21 Unguided Guided Charge~100 pC
At laser power of 8-9 TW: e-beam with %-level energy spread, 0.3 nC, 1-2 mm-mrad Beam profile Spectrum Unguided Guided 2-5 mrad divergence Charge~100 pC C.G.R. Geddes et al., Nature 431 (2004); PRL (2005); Phys. Plasmas 2005

22 Group velocity of laser < speed of light causes particle dephasing which causes momentum bunching
gv z-vgt Phase Dephasing distance: Control via density and a0 (laser intensity) Optimum acceleration requires Lacc = Ldeph: channel or large ZR

23 Geddes et al., Nature (2004) & Phys. Plasmas (2005)
Wake Evolution and Dephasing Yield Low Energy Spread Beams in PIC Simulations WAKE FORMING 200 Longitudinal Momentum Propagation Distance INJECTION 200 Longitudinal Momentum Propagation Distance 200 DEPHASING DEPHASING Longitudinal Momentum Propagation Distance Geddes et al., Nature (2004) & Phys. Plasmas (2005)

24 Next step: GeV laser driven accelerator
Increasing beam energy: cm-scale capillary discharge TW laser Capillary L'OASIS 100 TW laser Lower density needed: capillary discharges Capillary TREX Laser e- beam 1-2 GeV Plasma injector TW 40 fs 3-5 cm

25 Capillary channel guiding: set-up

26 Hydrogen based capillary discharge produces suitable density profile for guiding
209 m diameter capillary 85 mbar initial pressure n0 = 8.5x1017 cm-3 32 micron matched spot Mach-Zehnder interferometer A. Gonsalves et al., submitted to PRL CCD

27 40 TW power guided over > 3 cm
Output Input P = TW in 40 fs, 10 Hz wx,in=wy,in= 26 m wx,out=wy,out= 33 m

28 high resolution(under const.)
LOASIS GeV Spectrometer - Maximum resolving energy: ~1.1 GeV Yoke - Large momentum acceptance (factor 25) Pole - High resolution (bottom: <1%, forward: 2~4%) Chamber Capillary Interaction point Beamline 1GeV Mirror and cameras Phosphor 40MeV Bottom view: MeV high resolution(under const.) 160MeV moderate resolution Forward view: GeV Chamber Shielded mirror and cameras

29 Up to 1 GeV achieved with 40 TW laser pulses
E<0.6 GeV Q~ pC DATA UNDER PRESS EMBARGO 40 TW E< 1.1 GeV Q~ pC

30 Summary Single shot EO-based methods of CTR THz radiation measures < 50fs laser-wakefield accelerated e-bunches Single cycle THz detected, 0.4 MV/cm Spatio-temporal coupling from aberrations in imaging can lead to apparent double bunches GeV electron beam generated in 3.3 cm with 40 TW laser pulses THz based bunch profile measurements underway Novel diagnostics needed with fs and sub-fs resolution for slice energy spread and emittance Next steps are on staging modules towards 10 GeV

31 Scientists and Techs of LOASIS team
Staff: Exp’t: C. Geddes, W. Leemans, C. Toth Theory: E. Esarey, C. Schroeder, B. Shadwick, Postdocs:E. Michel*, P. Michel, B. Nagler Students: K. Nakamura, J. van Tilborg, G. Plateau,T. Wolf Techs: D. Syversrud, N. Ybarrolaza Collaborators: D. Bruhwiler, D. Dimitrov, J. Cary--TechX Corp T. Cowan, H. Ruhl -- University of Nevada, Reno* S. Hooker, A. Gonsalves--Oxford University, UK R. Ryne, J. Qiang--AMAC, LBNL R. Huber, R.Kaindl, J. Byrd, M. Martin--LBNL W. Mori--UCLA D. Jaroszynski-University of Strathclyde, UK M. Van der Wiel-TUE, Eindhoven, NL G. Dugan--Cornell University D. Schneider, B. Stuart, C. Barty, C. Bibeau--LLNL


Download ppt "Temporal characterization of laser accelerated electron bunches using coherent THz Wim Leemans and members of the LOASIS Program Lawrence Berkeley National."

Similar presentations


Ads by Google