Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

Department of Physics University of Toronto Low Temperature Thermal Transport Across the Cuprate Phase Diagram Mike Sutherland Louis Taillefer Rob Hill.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
The Low-Temperature Specific Heat of Chalcogen- based FeSe J.-Y. Lin, 1 Y. S. Hsieh, 1 D. Chareev, 2 A. N. Vasiliev, 3 Y. Parsons, 4 and H. D. Yang 4 1.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
SDW Induced Charge Stripe Structure in FeTe
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Semiconductors n D*n If T>0
The Three Hallmarks of Superconductivity
Coherent Kondo State in a Dense Kondo Substance : Ce x La 1-x Cu 6 A.Sumiyama et al., J.Phys.Soc.Jpn.55(1986) Shimizu-group Katsuya TOKUOKA.
Shimizu-lab M-1 Kubota Kazuhisa
First-principles study of spontaneous polarization in multiferroic BiFeO 3 Yoshida lab. Ryota Omichi PHYSICAL REVIEW B 71, (2005)
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Kazuki Kasano Shimizu Group Wed M1 Colloquium Study of Magnetic Ordering in YbPd Reference R.Pott et al, Phys.Rev.Lett.54, (1985) 1/13.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
An Introduction to Fe-based superconductors
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Magnetic states of lightly hole- doped cuprates in the clean limit as seen via zero-field muon spin spectroscopy Kitaoka Lab Kaneda Takuya F. Coneri, S.
野村悠祐、中村和磨A、有田亮太郎 東大工、九工大院A
Superconducting properties in filled-skutterudite PrOs4Sb12
Introduction to Josephson Tunneling and Macroscopic Quantum Tunneling
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
H.Sakakibara et al., PRB-85, (2012) H.Sakakibara et al., PRB-89, (2014) MORISHITA Naoki Kusakabe laboratory M1 Division of Frontier Materials.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Anisotropic Spin Fluctuations and Superconductivity in ‘115’ Heavy Fermion Compounds : 59 Co NMR Study in PuCoGa 5 Kazuhiro Nishimoto Kitaoka lab. S.-H.
Pressure Dependence of Superconductivity of Iron Chalcogenides
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
ARPES studies of unconventional
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Magnetism of the regular and excess iron in Fe1+xTe
High pressure phase diagram of Beryllium Phys.Rev.B 86,174118(2012) Shimizu Lab. Takuya Yamauchi.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Quantum Efficiency Improvement of Polarized Electron Source using Strain compensated Superlattice photocathode N. Yamamoto 1, X.G. Jin 1, T. Miyauchi 3,
Interplay between magnetism and superconductivity in Fe-pnictides INFN, Frascati, July 14, 2011 Andrey Chubukov University of Wisconsin.
 = -1 Perfect diamagnetism (Shielding of magnetic field) (Meissner effect) Dynamic variational principle and the phase diagram of high-temperature superconductors.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
Superconductivity Basics
Phase diagram of FeSe by nematic ultrafast dynamics
75As NQR Studies on LaFeAsO1-y and NdFeAsO0.6
Phase diagram of s-wave SC Introduction
UC Davis conference on electronic structure, June. 2009
Annual Academic Conference of Dept. Physics, Fudan University (2016)
Self-Assembled Quantum Dot Molecules Studied by AFM
Ginzburg-Landau theory
Presentation transcript:

Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of Materials Engineering Sc. Graduate School of Engineering Sc., Osaka Univ. Y. Zhang et al., Fudan Univ., Shanghai, China, arXiv: v1

Contents 1 1.Introduction 1.Brief intro to Superconductivity 超伝導 2.Superconducting gaps 超伝導ギャップ 3.Experimental method for probing SC gap: ARPES Angle Resolved Photo Emission Spectrum 角度分解型光電子分光 2.Exp. result for BaFe 2 (As 0.7 P 0.3 ) 2, by ARPES 1.Fermi Surfaces フェルミー面 2.Superconducting gap 超伝導ギャップ 3.Summary Introduction

What is Superconductivity? If substance is in superconducting state, which: 1.Has no electric resistance 電気抵抗 2.Repels magnetic field 磁場 from itself 2

0 T [K] SC Ba 1-x K x Fe 2 As 2 ( T c =38K) hole-doping AFM x Full gap KFe 2 As 2 T c =38K Ba 2 + →K + Ba/K Ba 0.6 K 0.4 Fe 2 As 2 Full gap Ba BaFe 2 (As 0.66 P 0.33 ) 2 As 3- →P 3- Nodal T c =30K a = 3.92 Å c ~ 12.8 Å h Pn ~ 1.32 Å Matsuda group, Ishida group a ~ 3.92 Å c ~ 13.3 Å h Pn ~ 1.38 Å Optimum height Rotter et al. (2008) BaK122 Ba122P y BaFe 2 (As 1-y P y ) 2 isovalent-doping Nodal Iron-based SC 鉄系超伝導 : Ba122 Introduction 3 What is superconducting gap?

Introduction Superconducting gap Energy E Fermi Full Density of State gap Density of State Energy E Fermi Nodal gap 4 SC gap appears in low temperature ( < T c 転移温度 ) at the same time with SC state, due to coupled electrons 電子対 (cooper pair クーパー対 ) How to distinguish this two? What about iron-based superconductors? Interaction energy 相互作用のエネルギー : ≈ [eV] Interaction distance 相互作用の距離 : > 100[nm] BCS superconductors High T c cuprate superconductors

Introduction Possible SC order 秩序 parameters and their spin-state スピン状態 BCS SC High-T c oxides CeCu 2 Si 2 UPd 2 Al 3, CeRIn 5 UPt 3 Sr 2 RuO 4 5

Introduction SC gap in iron-based SC StructureSubstance 122Ba 1-x Fe 2-x Co x As 2 122Ba 1-x K x Fe 2 As 2 122K x Fe 2-x Se 2 11FeTe 1-x Se x StructureSubstance 11FeSe 111LiFeP 1111LaOFeP 122KFe 2 As 2 122BaFe 2-x Ru x As 2 122BaFe 2 (As 1-x P x ) 2 Energy E Fermi Full Density of State gap Density of State Energy E Fermi Nodal gap NMR, Penetration Depth, Thermal Conductivity, Scan tunneling spectroscopy 6 Node position in FSs?

Introduction ARPES 7 1.Based on Photoelectric effect 光電効果 2.Measures an intensity of released electron energy More intensity ⇒ More occupied states 占有状態 Less intensity ⇒ Less occupied states 占有状態 3.In this manner, directly measures DOS 状態密度 !!! 4.FSs can be drawn by angle resolved method

Exp. results BaFe 2 (As 0.7 P 0.3 ) 2 8 Zero resistivityMeissner effect

Exp. results Phase diagram 相図 9 BaFe 2 (As 1-x P x ) 2 T c = 30[K] (x = 0.3) Fe As h Pn : Distance between Fe layer and As

Exp. results ARPES result on BaFe 2 (As 0.7 P 0.3 ) 2 Z. R. Ye et al., arXiv: v1 BaFe 2 (As 0.7 P 0.3 ) 2 Ba 0.6 K 0.4 Fe 2 As 2 10

3D view Exp. results ARPES result on BaFe 2 (As 0.7 P 0.3 ) 2 BaFe 2 (As 0.7 P 0.3 ) 2 Z. R. Ye et al., arXiv: v1 11

Exp. results 12 BaFe 2 (As 0.7 P 0.3 ) 2 : Hole pocket at 9[K]

Exp. results BaFe 2 (As 0.7 P 0.3 ) 2 : Electron pocket 13 at 9[K]

Exp. results Temperature dependence of gap Hole pockets ホール面 14

Exp. results Electron pockets 電子面 15 Temperature dependence of gap

Exp. results ARPES results on BaFe 2 (As 1-x P x ) 2 16 in Electron pockets 電子面 Hole pockets ホール面 no NodesNode exists on

Exp. results ARPES results on BaFe 2 (As 1-x P x ) 2 1.3D-like FSs around ГZ axis 2.At Z point, α surface has no energy gap From ARPES: SC (line) nodal gap exists 17

Summary I 18 TypePocketSC gap HoleαNodal HoleβFull HoleγFull ElectronδFull ElectronηFull Superconducting gap of each pocket Nodal gap α band mixes with α and β : δ γ : η Nesting between Γ and M ARPES results on BaFe 2 (As 1-x P x ) 2

1.As pnictogen height becomes lower, FSs become 3D like. 2.Even 3D like FSs cause large RDOS, T c is still high enough. 3.Multiband effect BaK122 Ba122P Sr122P Suzuki, Usui, Kuroki et al., JPSJ(2011) Y. Zhang et al., arXiv: v1 10 Summary II Comparison with Theory 19

Conclusions in this work Thank you for your attention The End This work unifies the seemingly diversified phenomenology of nodal and nodeless superconducting gaps in various iron based superconductors, and It provides a discriminator for theories on iron pnictides.