SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.

Slides:



Advertisements
Similar presentations
MCAO Laser Launch Telescope and Periscope Celine d’Orgeville and Jim Catone.
Advertisements

1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
Chapter 13 Preview Objectives Electromagnetic Waves
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
SAM LGS-v1, Optics, The Laser Box position on SOAR IR Nasmyth Optical Nasmyth At 67.5Deg from IR Nasmyth Note: Laser umbilical cord of 7m has been.
Basic Illuminating Light Paths and Proper Microscope Alignment E. D. Salmon University of North Carolina at Chapel Hill.
19/12/06SAM_LGS_1, CTIO, Optics1 SOAR at Horizon Telescope Ring Section= x336mm Laser Box Width= mm.
CHARA AO WFS Design JDM (+LS,MJI) 2012Sep06 v0.1 1.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Keck I Cassegrain ADC: Preliminary Design Overview UCO/Lick Observatory 15 October 2003.
Laser Launch System for the LBT Richard Davies Sebastian Rabien Max Planck Institute for Extraterrestrial Physics  Approaches of other observatories 
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Auger Fluorescence Detector
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
This Set of Slides This set of slides deals with telescopes. Units covered: 26, 27, 28, 29, and 30.
NGAO Laser Guide Star wavefront sensor Optical Design 17/16/2015Caltech Optical Observatories PD Phase LGS WFS Mini-Review.
The Gemini MCAO System (EPICS Meeting, SLAC, April 2005) 1 The Gemini MCAO System Andy Foster Observatory Sciences Ltd.
MCAO AO Module Electronics Mark Hunten. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Adaptive Optics Module Electronics The Adaptive Optics Module.
Diffraction vs. Interference
Eusoballoon optics characterisation Camille Catalano and the Toulouse team Test configuration Calibration of the beam Exploration of the focal plan.
Oct 17, 2001SALT PFIS PDR - Structure1 Structure Interface/ constraints Loads Structure design rationale Truss Weight and CG Finite Element Analysis/ Image.
Laser news AWAKE performance meeting Overview There was a meeting on with the supplier of the laser system (AMPLITUDE) No new information.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Alignment R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
SAM PDR1 Laser S afety forSAM Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena 1. ANSI Z , Safe use of Lasers Outdoors.
Effective lens aperture Deff
1 Kai Wei Institute of Optics and Electronics (IOE),CAS August 30,2010 The TMT Laser Guide Star Facility (LGSF)
MCAO Adaptive Optics Module Mechanical Design Eric James.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
PicoTRAIN IC Only oscillator (no MOPA design)  more simplicity and reliability Dimensions: 480*200*101.6mm3 ongoing volume production High stability.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Design R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
Magellan F/5 System Status A.Szentgyorgyi/SAO/25 Sept 2004.
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
Brazilian Tunable Filter Imager (BTFI) Preliminary Design Review (PDR)‏ USP-IAG Universidade de São Paulo 18-19th June 2008 BTFI Optics (Keith Taylor)
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
ZTF Optics Design P. Jelinsky ZTF Technical Meeting 1.
Design and Implementation of a Fast-Steering Secondary Mirror System Maryfe Culiat Trex Enterprises July 25, 2007.
Eusoballoon optics test Baptiste Mot, Gilles Roudil, Camille Catalano, Peter von Ballmoos Test configuration Calibration of the light beam Exploration.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Henry Heetderks Space Sciences Laboratory, UCB
Oct 17, 2001SALT PFIS Preliminary Design Review1 Southern African Large Telescope Prime Focus Imaging Spectrograph Mechanical Mechanism Design Michael.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Pre-focal wave front correction and field stabilization for the E-ELT
A monitor of the vertical turbulence distribution MASS: Victor Kornilov a, Andrei Tokovinin b, Olga Vozyakova a, Andrei Zaitsev a, Nicolai Shatsky a, Serguei.
ZTF Optics Design ZTF Technical Meeting 1.
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y APS Formation Sensor.
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
The Field Camera Unit Results from technical meeting S. Scuderi INAF – Catania.
Upgrade of the HSX Thomson Scattering System HSX TS upgrade requirement K. Zhai, F. S. B. Anderson, D. T. Anderson, C. Clark, HSX Plasma Laboratory, Univ.
X-ray Interferometer Mirror Module ISAL Study Pre-work Overview.
First Thomson Scattering Results on HSX K. Zhai, F.S.B. Anderson, and D.T. Anderson HSX Plasma Laboratory, U. of Wisconsin, Madison 1. Abstract 5. Summary.
Astronomical Spectroscopic Techniques. Contents 1.Optics (1): Stops, Pupils, Field Optics and Cameras 2.Basic Electromagnetics –Math –Maxwell's equations.
Tip/tilt options Trade Study Report on Stand-alone T/T vs. DM on T/T Stage (WBS ) Brian Bauman December 12, 2006.
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
Light What is it?.
Astronomical Spectroscopic Techniques
IR Detector - Test cryostat : Machining
Testing and Calibration at IHEP for eXTP (current plans and needed facilities) YuSa Wang
Karl Young, Shaul Hanany, Neil Trappe, Darragh McCarthy
Progress on 1.8m Telescope with 127-element Adaptive Optics at IOE
The Pixel Hybrid Photon Detectors of the LHCb RICH
CHEOPS - CHaracterizing ExOPlanet Satellite
Presentation transcript:

SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena

SAM PDR2 SAM at a glance (slide from 2003)

SAM PDR3 Why do we need SAM? FWHMEE(0.3”) SOAR0.56”0.127 SAM0.28”0.218 Typical conditions, 0.7  m, z=0 o SOAR is (must be) a high-resolution telescope! SAM PSF without SAM Seeing histograms

SAM PDR4 Rayleigh LGS timing Range gate defines the spot elongation and flux

SAM PDR5 Rayleigh laser at MMT 25W at 532nm

SAM PDR6 SAM design strategy Use standard commercial components whenever possible, not custom items Get a robust system – “set and forget” Provide margin in performance

SAM PDR7 Why this PDR? The SAM team has designed the LGS system, but… we have no prior experience and need advice. Current LGS design is PRELIMINARY, can be improved with panel’s input! SAM LGS Trade studies Laser choice Fast shutter Optical design Alignment Mechanical design Safety Requirements

SAM PDR8 Why a UV laser? UV not visible – no visual hazards More scattered photons (~ - 3 ) Easy to separate from the science Smaller launch telescope Cheap industrial lasers available: Nd:YAG frequency- tripled, =355nm (material processing) Less W per $ compared to 532nm Less efficient optics & detector, absorption in air Why not?

SAM PDR9 LGS trade studies Return flux calculation Fast shutter with Pockels cell (test) Select altitude and range gate Select the laser LLT and beam transfer concept Interfaces with SOAR

SAM PDR10 Return flux Laser power 10W at 355nm Loop time 4.3ms Spot elongation 1” Includes SAM efficiency (0.086), air absorption and density We need >300 photons! We have them, on paper flux absorption

SAM PDR11 Fast shutter – Pockels cell QX1020 cell Cleveland Crystals HV driver from BME

SAM PDR12 Ringing of the Pockels cell Centroids of inner spots are displaced by 9-90 mas depending on the seeing After-pulse contains 20% of light H=7km 1” seeing 1” elongation

SAM PDR13 Altitude and range gate Begin with H=7km and elongation 1” to maximize the flux. Change later if required

SAM PDR14 Select the laser: JDSU Cost, lower power, robustness, umbilical length MMT experience (no trouble in 4 years) Laser modelDS20-355Q301-HD Power, W at 10kHz810 Beam quality M 2 <1.1<1.2 Cost, k$ Plug power, kW< typ. Umbilical cable, m37

SAM PDR15 Laser at JDSU August 31, 2007 Q301-HD is used in the microprocessor industry 24/7. Several hundred are made

SAM PDR16 Laser Launch Telescope Aperture diameter 30cm 30cm  50cm * ( 355 / 589 ) Located behind SOAR M2 Mass <8kg (!?), length <0.7m Diffraction-limited at 355nm Ground-layer seeing 1” LLT design with a light-weight aluminum mirror (A. Montane)

SAM PDR17 Beam transport  Small beam inside tube  Flexure not critical  Active pointing in LLT Laser and its power supply/chiller need thermal cabinets Return polarization: Rayleigh scattering – yes Aerosol scattering - no

SAM PDR18 Laser electronics & chiller Electronics: 427x363x76mm, 8.4kg, 400W typ. Chiller: 533x440x264mm, 55kg, 700W typ., horizontal

SAM PDR19 Beam transport & control Power and LLT illumination Pointing on the sky Beam quality and focus BEAM CONTROL

SAM PDR20 SOAR flexure tests M2 displacement 2.2mm, tilt 77” zenith-to-horizon, mostly due to the elevation ring’s sag (confirmed by the FEA analysis of D.Neill) LLT mass 13kg has no effect on M2 (<20  m and <0.7”) Active control of M4 may be necessary Laser box on the truss OK (FEA calculation)

SAM PDR21 SOAR-LLT relative flexure Relative angle between the SOAR optical axis (source at the Nasmyth rotator center, active optics ON) and the LLT is less than +- 5”

SAM PDR22 Interfaces of LGS with SOAR Laser box on the SOAR truss Laser cable goes through regular cable wrap Laser electronics & chiller in a thermal cabinet LLT mounted behind M2 at 3 points Beam duct and relay mirror M4 Safety system Observatory interlock system

SAM PDR23 THE END

SAM PDR24 Electrical connections

SAM PDR25 SAM in numbers DMBimorph, 50mm pupil, 60 electrodes WFSS-H 10x10, CCD-39 pixel 0.37” LaserTripled Nd:YAG 355nm, 10W, 10 kHz LLTD=30cm, behind secondary, H=7km GatingKD*P Pockels cell, dH=120m Tip-tiltTwo probes, fiber-linked APDs, R<18 Focal plane 3’x3’ square, 3 arcsec/mm, f/16.5 CCD imager 4Kx4K, 0.05” pixels, 6 filters Coll. space50mm beam, 100mm along axis

SAM PDR26 Tip-tilt guiders: the field 4’x4’ surface