Summary Session 9B Polarized electron (positron) sources.

Slides:



Advertisements
Similar presentations
Record Values of Electron Beam Polarization and Quantum Efficiency for Semiconductor Photocathodes Yu.A.Mamaev St. Petersburg State Polytechnic University.
Advertisements

Polarized Electron Source R&D at CEBAF/JLab P. Adderley, J. Brittian, J.Clark, J. Grames, J. Hansknecht, M.Poelker, M. Stutzman, R. Suleiman Students:
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
05/20/ High-Current Polarized Source Developments Evgeni Tsentalovich MIT.
ILC Polarized Electron Source Annual DOE HEP Program Review June 5 – 8 International Linear Collider at Stanford Linear Accelerator Center A. Brachmann,
PST 2007 BNL 1 Development of High- performance Polarized e- source at Nagoya University. Nagoya University M.Yamamoto, S.Okumi, T.Konomi N.Yamamoto, A.Mano,
Polarized photoemission
Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler Laboratory Directed Research and Development (LDRD)
PST'05 (XIth Workshop on Polarized Source and Target)1 Generation of Polarized Electrons by Filed Emission M. Kuwahara A, T. Nakanishi A, S. Okumi A, M.
Polarized Electrons for Linear Colliders J. E. Clendenin, A. Brachmann, E. L. Garwin, R. E. Kirby, D.-A. Luh, T. Maruyama, R. Prepost, C. Y. Prescott,
A Polarized Electron PWT Photoinjector David Yu DULY Research Inc. California, USA SPIN2004, Trieste, Italy 10/14/04.
1 High Polarization and Low Emittance Electron Source for ILC Nagoya University Dept. of Physics (SP-Lab) Masahiro Yamamoto.
1) Source Issues 2) SLAC’s ITF Jym Clendenin SLAC.
1 Polarized photocathode R&D Feng Zhou SLAC Collaborators: Brachmann, Maruyama, and Sheppard ALCPG09/GDE09 09/28-10/03/09.
Low Emittance RF Gun Developments for PAL-XFEL
Compton/Linac based Polarized Positrons Source V. Yakimenko BNL IWLC2010, Geneva, October 18-22, 2010.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
PESP2008 Graduate School of Science, Nagoya University M.Yamamoto, T.Konomi, S.Okumi, Y.Nakagawa, T.Nakanishi Graduate School of Engineering,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Strained Superlattice.
High Intensity Polarized Electron Sources
WG3a Sources Summary Jim Clarke on behalf of John Sheppard, Masao Kuriki, Philippe Piot and all the contributors to WG3a.
D.-A. Luh, A. Brachmann, J. E. Clendenin, T. Desikan, E. L. Garwin, S. Harvey, R. E. Kirby, T. Maruyama, and C. Y. Prescott Stanford Linear Accelerator.
Electron Source Configuration Axel Brachmann - SLAC - Jan , KEK GDE meeting International Linear Collider at Stanford Linear Accelerator Center.
Polarized Photocathode Research Collaboration PPRC R
ERHIC design status V.Ptitsyn for the eRHIC design team.
9/24-26/07 e- KOM Slide 1/20 ILC Polarized e- source RDR Overview A. Brachmann.
Recent Polarized Cathodes R&D at SLAC and Future Plans Feng Zhou Axel Brachmann, Jym Clendenin (ret.), Takashi Maruyama, and John Sheppard SLAC Workshop.
09/10/2007 Polarized Source for eRHIC Evgeni Tsentalovich MIT.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
R.Chehab/ R&D on positron sources for ILC/ Beijing, GENERATION AND TRANSPORT OF A POSITRON BEAM CREATED BY PHOTONS FROM COMPTON PROCESS R.CHEHAB.
High Intensity Polarized Electron Gun Studies at MIT-Bates 10/01/2008 PESP Evgeni Tsentalovich MIT.
Non-conservation of the charge lifetime at high average current R.Barday University Mainz, Germany INFN Milano-LASA 4-6 October 2006.
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
XIIth International Workshop on Polarized Sources, Targets & Polarimetry Highly Effective Polarized Electron Sources Based on Strained Semiconductor Superlattice.
September 10-14, 2007 XIIth International Workshop on Polarized Sources, Targets & Polarimetry, Brookhaven National Laboratory (BNL) 1 Polarized Electron.
Spectral Response of GaAs(Cs, NF 3 ) Photocathodes Teresa Esposito Mentors: I. Bazarov, L. Cultrera, S. Karkare August 10, 2012.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Page 1 Polarized Electron Sources for Linear Colliders October, 2010 A. Brachmann, J. C. Sheppard, F. Zhou SLAC SLAC October 18-22, 2010.
1 Challenges for ILC and CLIC polarized electron sources Feng Zhou SLAC Major contributors: Brachmann, Maruyama, Sheppard, and Zhou SLAC Accelerator Seminar.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
Beam plan at STF phase1 12/6/2005 TTC-WG3 H. Hayano STF phase1 1st step : DC-gun + photo-cathode (2006) quick beam source( DC gun exist), no pre-acceleration,
European Advanced Accelerator Concepts Workshop, Elba, September 14 th -18 th, 2015Steffen Döbert, BE-RF Electron accelerator for the AWAKE experiment.
Beam Polarization I. Koop BINP, Novosibirsk, Russia Workshop on Physics at HIEPA, Hefei, China January 2015.
Injection System Update S. Guiducci (LNF) XVII SuperB Workshop La Biodola, Isola d'Elba, May 29 th 5/29/111.
November 17, 2008 A. Brachmann Slide 1 ILC polarized Electron Source R&D Update LCWS 2008 A. Brachmann, J. Sheppard, F. Zhou - SLAC National Accelerator.
LTR for ILC e- (eLTR) RF section solenoid section.
An Electron source for PERLE
Polarized Injector Update
S.M. Polozov & Ko., NRNU MEPhI
MBE Growth of Graded Structures for Polarized Electron Emitters
high performance photocathodes for microscopy and accelerators
Polarized e- Source Design and R&D 10/24/05
Polarized Electron Source for eRHIC (the ring-ring option)
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Experimental Overview
Magnetized Bunched Electron Beam from DC High Voltage Photogun
SuperB project. Injection scheme design status
The Cornell High Brightness Injector
Period Dependence of Time Response of Strained Semiconductor Superlattices XIVth International Workshop on Polarized Sources, Targets & Polarimetry Leonid.
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Electron Source Configuration
Polarized Positrons at Jefferson Lab
R. Suleiman and M. Poelker October 12, 2018
Studies of Emittance & Lifetime
R. Suleiman and M. Poelker September 29, 2016
MEIC Polarized Electron Source
Update on ERL Cooler Design Studies
Generation of Magnetized Bunched Electron Beam for MEIC Cooler
Presentation transcript:

Summary Session 9B Polarized electron (positron) sources

Session 9B : Polarized electron (positron) sources  Presentations  oral : 15  poster : 6 JLAB, SLAC, Univ. of Mainz, Univ. of Bonn, CERN, DESY, St. Petersburg., KEK, Osaka Electro-Communication Univ., Rikkyo Univ., and Nagoya Univ., 11 groups

Topics  Pol.e- source operation  High average current operation  High current density test  Photocathodes Development  strained super-lattice photocathode  gridded photocathode, pyramidal shape photocathode  Low Emittance Beam Production  Polarized electron source for SPLEEM  Pol.e ± Source for ILC  Polarized electron beam injector  Polarized positron beam production

Topics : Pol.e- source operation

Load lock (GaAs on puck) NEG pipe Laser (1 532 nm) Faraday Cup High Voltage (100 kV) Activation (Cs/NF3, 5 mm) Experimental Setup 350  m1500  m Spot Size Adjustment High average current test : JLAB pol.e- source J.Grames (JLAB)

(Best Solution – Improve Vacuum, but this is not easy) Can increasing the laser spot size improve charge lifetime? Bigger laser spot, same # electrons, same # ions electron beam OUT residual gas cathode Ionized residual gas strikes photocathode anode laser light IN Ion damage distributed over larger area J.Grames (JLAB)

Tough to measure >1000 C lifetimes with C runs! ≈ 18 Expectation: High average current test : JLAB pol.e- source J.Grames (JLAB)

High average current test Mainz pol.e- source Current density is presently limited to 1.6 A/cm mA in 100  s long pulses at 100 Hz repetition rate. Q=5.7  C per Impulse emitted area  *(1.05mm) 2 ~3.5 mm 2 hole concentration 2*10 19 cm -3 Power, W 15 Wavelength, nm 808 (fixed) Pulse length, ms Frequency, Hz 100 Beam divergence, N.A K.Aulenbacher (Mainz)

Non-linear effects 1: Cathode heating Photocathode vacuum lifetime normalized to the vacuum lifetime at the laser power 23 mW (>300h) (no current drawn during ill.). We are here at I=1mA (QE=20mA/W) K.Aulenbacher (Mainz)

Bunch width (FWHM): 1.6ns Bunch charge : 8nC Laser spot size :  ~20mm, Peak current density ~18 mA/mm 2 No Charge Limit bunch charge : 3.3pC/bunch Laser Spot size  ~1.6mm(2  ) bunch width : ~30ps (estimate) Peak current density (estimate) : ~240 mA/mm 2 High current density test Nagoya pol.e- source M.Yamamoto (Nagoya)

Load-lock gun operation at Univ.Bonn P = 830 nm QE = 0.2 % M.Eberhardt and J.Wittschen (Bonn)

New Load-Lock at Univ.Bonn M.Eberhardt and J.Wittschen (Bonn)

Topics : Photocathodes Development

CompositionThicknessDoping As cap GaAs QW60 A 7  cm -3 Be Al 0.36 Ga 0.64 As SL 23 A 3  cm -3 Be In Al 0.2 Ga As 51 A Al 0.4 Ga 0.6 AsBuffer 0.3  m6  cm -3 Be p-GaAs substrate MBE grown InAlGaAs/AlGaAs strained-well superlattice E g =1.543eV, Valence band splitting E hh1 - E lh1 = 60 meV, P max =92%, QE=0.6%. Y.Mamaev (St.Petersburg)

SL In Al 0.2 Ga As(5.1nm)/Al 0.36 Ga 0.64 As(2.3nm), 4 pairs Y.Mamaev (St.Petersburg) The optimization of DBR – superlattice structures is underway. polarization(max.) : 92%, Quantum efficiency : 0.6%

Material specific depolarization  emit = 3-5 ps (Mainz)  emit = 3-5 ps (Mainz) If  s < 35 ps, the spin relaxation time has a significant effect on polarization. If  s < 35 ps, the spin relaxation time has a significant effect on polarization. D’yakonov-Perel (DP) mechanism is dominant in low doped SL. D’yakonov-Perel (DP) mechanism is dominant in low doped SL. DP mechanism comes from the spin-orbit interaction. DP mechanism comes from the spin-orbit interaction. Find materials with a smaller spin-orbit interaction. Find materials with a smaller spin-orbit interaction. GaN GaP GaAs GaSb GaN GaP GaAs GaSb  SO (eV)  SO (eV) Try GaAs/InGaP strained-superlattice Try GaAs/InGaP strained-superlattice P 0 : Initial polarization P 0 : Initial polarization  s : spin relaxation time  s : spin relaxation time  emit : photoemission time  emit : photoemission time P BBR : depolarization at BBR P BBR : depolarization at BBR T.Maruyama (SLAC)

Spin relaxation rate based on D’yakonov-Perel mechanism  : spin-orbit-induced spin splitting coefficient  : spin-orbit-induced spin splitting coefficient E 1e : confinement energy E 1e : confinement energy Narrower well has a larger confinement energy. Narrower well has a larger confinement energy. Larger confinement energy  Larger confinement energy  Less vertical transport, thus lower QE Less vertical transport, thus lower QE More scattering, thus lower polarization. More scattering, thus lower polarization.  s ~ 10 ps  s ~ 2 ps T.Maruyama (SLAC)

Superlattice structure affects dramatically 1.5 nm GaAs + 4 nm In 0.65 Ga 0.35 P4 nm GaAs nm In 0.65 Ga 0.35 P QE ~ 0.002% Pol ~ 40% QE ~ 0.01% Pol ~ 68% T.Maruyama (SLAC)

Structure of gridded cathode CompositionThicknessDoping p- GaAs substrate, 5x10 18 cm -3 Zn doped Al.3 Ga.7 As buffer 5x10 18 cm -3 Be doped GaAs,AlGaAs, GaAsP/GaAs active region 90nm cm -3 Be doped GaAs surface region 5-10nm 1- 5x10 19 cm -3 Be doped MBE grown high surface/low active doping gridded cathode 0.3um W film, Ohmic contact Metal grid, Schottky contact K.Ioakeimidi (SLAC)

Thin GaAs films with 4mm 2D grid and 48mm pitch QE&Polarization - gridded samples 5x10 16 cm -3 K.Ioakeimidi (SLAC) Monte Carlo simulations indicate that the QE-Polarization trade off can be broken by accelerating the electrons in the active region Preliminary experimental results indicate a 1% increase in polarization

M.Kuwahara (Nagoya) Pol.e- extraction from Pyramid-shaped Photocathode Extraction of polarized electrons by F.E. Electrons extracted by F.E. have higher polarization than NEA ’ s. long lifetime compared with NEA surface.

Topics : Low Emittance Beam Production

Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode N.Yamamoto (Nagoya)

Low Emittance Beam extraction from GaAs-GaAsP superlattice photocathode  rms : 0.096±0.015 .mm.mrad N.Yamamoto (Nagoya)

Topics : Polarized electron source for SPLEEM

Yasue (Osaka Elec.Comuni.Univ) Reflection Diffraction sample Electrons Low energy electrons: strong interaction with surfaces - relatively high reflectivity - small penetration depth SURFACE SENSITIVE energy filter electron optics manipulator 20cm CCD camera sample objective lens beam separator energy filter screen e - source HV LEEM (Low Energy Electron Microscopy)

Co/W(110) 3.8eV FOV=25  m in-plane  =0 o  =45 o  =90 o  =-45 o  =-90 o  MM P M CONTRAST: P·M P // M: maximum (minimum) P  M: 0 Yasue (Osaka Elec.Comuni.Univ) Spin Polarized LEEM (SPLEEM)

Exchange Asymmetry A SPLEEM Contrast: HIGH POLARIZATION FAST ACQUISITION OF SPLEEM IMAGE For higher magnification For much faster acquisition HIGH BRIGHTNESS (HIGH INTENSITY) SOURCE Yasue (Osaka Elec.Comuni.Univ)

S.Okumi (Nagoya) focusing length ~ 4mm spot size ~ 3  m Concept of extracting high brightness beam

S.Okumi (Nagoya)

Topics : Pol.e ± Source for ILC

L- band bunc her 6.4 nC, 2 ns ILC e- injector with SLC gun and drift distance to SHB  bend DC gun SHB1SHB2 Two 5-cell L-band Two 50-cell NC L-band pre-acceleration All units in cm …… J.E.Clendenin (SLAC)ParameterUnitsAt gun exit After bunchers*ChargenC Bunch length (FWHM) ps Deg. L- band Energy/Energy spread MeV /0.09 (0.95%) Normalized rms emittance m n/a43 PARMELA results

M.Yamamoto (Nagoya) Solenoid 4.8nC,  16mm [m] anode Solenoid 200kV,1.0ns,4.8nC SHB1SHB [m] 108MHz433MHz 200keV,4.8nC,1.0ns Similar geometry of TESLA (Aline Curtoni et al).  rms ~ 9.7 pi.mm.mrad Beam Simulation (Nagoya 200keV Gun)

A.Brachmann (SLAC) Schematic Layout

A.Brachmann (SLAC) Two 5-cell SW L-band108MHz SHB 433 MHz SHB 1 st TW Structure2 nd TW Structure matching triplet Low Energy Beam Line and Bunching System Simulations including Space Charge

Spin Rotation using Solenoids 5 GeV Bend of n * o Odd Integer S longitudonal ~ 7.5 m DR Pair of Solenoids (SC) S vertical (Precession) S transverse (Rotation) ILC design: n = 7  o Depolarization in arc due to energy spread: Arc bending angleθ = o Spin precession angle  =(7/2)  Energy spreadΔ  /  = ±0.02 GeV Depolarization (analytic)ΔP/P = Particle trackingΔP/P = A.Brachmann (SLAC)

T.Omori (KEK) Laser-Based Polarized e + e + Source for ILC

A = 0.90 ± 0.18 %Pol. = 73 % M. Fukuda et al., PRL 91(2003) T.Omori (KEK)

Electron storage ring laser pulse stacking cavities positron stacking in main DR Re-use Concept Compton ring to main linac T.Omori (KEK)

P.Shuler (DESY) The E166 Experiment

P.Shuler (DESY) Pol.e+ (max.) : ~80%